Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species.
نویسندگان
چکیده
When exposed to hypoxia (1.5% O2), several cell types have been shown to increase production of reactive O2 species derived from the mitochondrial electron transport chain (mtROS). The general physiological consequences of hypoxic mtROS production are not completely understood, although several groups have demonstrated that mtROS promote the stabilization and activity of hypoxia inducible factor-1alpha (HIF-1alpha) transcription factor, alter cardiac myocyte contractility, and modulate Na+-K+-ATPase activity. To investigate the effects of hypoxia-induced mtROS on general cellular oxidative metabolism, we measured the levels of glutathione, a major cellular antioxidant, in response to hypoxic treatment. Our data indicate that HEK293 and Hep3B cells exposed to 1.5% O2 exhibit a time-dependent decrease in cellular glutathione stores and concomitant inhibition of glutathione biosynthesis, which correlates to impaired transport of the substrate cystine. Using a combination of ROS scavengers, mitochondrial electron transport inhibitors, and mitochondrial DNA-deficient rho0 cells, we demonstrate that this decrease in cellular glutathione levels is mediated by hypoxia-induced mtROS. Intriguingly, this effect is also inhibited by cyclohexamide but is not dependent on HIF-mediated transcription. Overall, these data suggest a novel HIF-independent role for mitochondrial ROS in regulating glutathione synthesis, and hence cellular oxidative homeostasis, during hypoxic exposure.
منابع مشابه
Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.
Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic s...
متن کاملHypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species.
The molecular mechanisms by which cells detect hypoxia (1.5% O2), resulting in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) protein remain unclear. One model proposes that mitochondrial generation of reactive oxygen species is required to stabilize HIF-1alpha protein. Primary evidence for this model comes from the observation that cells treated with complex I inhibitors, su...
متن کاملHypoxic but not anoxic stabilization of HIF-1 requires mitochondrial reactive oxygen species
Schroedl, Clara, David S. McClintock, G. R. Scott Budinger, and Navdeep S. Chandel. Hypoxic but not anoxic stabilization of HIF-1 requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283: L922–L931, 2002. First published May 24, 2002; 10.1152/ ajplung.00014.2002.—The molecular mechanisms by which cells detect hypoxia (1.5% O2), resulting in the stabilization of hyp...
متن کاملHypoxia and stretch regulate intercellular communication in vascular smooth muscle cells through reactive oxygen species formation.
OBJECTIVE We hypothesized that the alterations in vasomotor tone and adaptive remodeling responses that occur in the circulation because of hypoxia were dependent on changes in cell to cell communication through regulation of gap junction protein expression and function. Consequently, we studied the amount, distribution, and permeability of the principal vascular smooth muscle cell (VSMC) gap j...
متن کاملHIF-Independent Regulation of Thioredoxin Reductase 1 Contributes to the High Levels of Reactive Oxygen Species Induced by Hypoxia
Cellular adaptation to hypoxic conditions mainly involves transcriptional changes in which hypoxia inducible factors (HIFs) play a critical role. Under hypoxic conditions, HIF protein is stabilized due to inhibition of the activity of prolyl hydroxylases (EGLNs). Because the reaction carried out by these enzymes uses oxygen as a co-substrate it is generally accepted that the hypoxic inhibition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 97 4 شماره
صفحات -
تاریخ انتشار 2004