The 1-Box Pattern on Pattern-Avoiding Permutations
نویسندگان
چکیده
This paper is continuation of the study of the 1-box pattern in permutations introduced previously by the authors. We derive a two-variable generating function for the distribution of this pattern on 132-avoiding permutations, and then study some of its coefficients providing a link to the Fibonacci numbers. We also find the number of separable permutations with two and three occurrences of the 1-box pattern.
منابع مشابه
AVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k
Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...
متن کاملA Wilf Equivalence Related to Two Stack Sortable Permutations
A permutation is so-called two stack sortable if it (i) avoids the (scattered) pattern 2-3-4-1, and (ii) contains a 3-2-4-1 pattern only as part of a 3-5-2-4-1 pattern. Here we show that the permutations on [n] satisfying condition (ii) alone are equinumerous with the permutations on [n] that avoid the mixed scattered/consecutive pattern 31-4-2. The proof uses a known bijection from 3-2-1-avoid...
متن کاملOn multi-dimensional patterns
We generalize the concept of pattern occurrence in permutations, words or matrices to that in n-dimensional objects, which are basically sets of (n + 1)-tuples. In the case n = 3, we give a possible interpretation of such patterns in terms of bipartite graphs. For zero-box patterns we study vanishing borders related to bipartite Ramsey problems in the case of two dimensions. Also, we study the ...
متن کاملGenerating Trees and Pattern Avoidance in Alternating Permutations
We extend earlier work of the same author to enumerate alternating permutations avoiding the permutation pattern 2143. We use a generating tree approach to construct a recursive bijection between the set A2n(2143) of alternating permutations of length 2n avoiding 2143 and the set of standard Young tableaux of shape 〈n, n, n〉, and between the set A2n+1(2143) of alternating permutations of length...
متن کاملImplicit Generation of Pattern-Avoiding Permutations Based on πDDs
Pattern-avoiding permutations are permutations where none of the subsequences match the relative order of a given pattern. Pattern-avoiding permutations are related to practical and abstract mathematical problems and can provide simple representations for such problems. For example, some floorplans, which are used for optimizing very-large-scale integration(VLSI) circuit design, can be encoded ...
متن کامل