Reactive hydrocarbon flux footprints during canopy senescence

نویسندگان

  • C. Strong
  • J. D. Fuentes
  • D. Baldocchi
چکیده

A coupled Lagrangian random walk and atmospheric turbulence model was employed to investigate the magnitude of isoprene source distribution within a mixed deciduous forest canopy undergoing defoliation. Modeled source distributions were studied to understand how the flux footprint evolved as the total amount and vertical distribution of foliage changed during the leaf senescing and abscission period. The modeled ensemble air parcel residence times inside the forest canopy were also studied to quantify the fraction of isoprene destroyed inside forest canopies due to rapid chemical reactions. Defoliation in the canopy affected the footprint by vertically redistributing the flux sources, and by reducing the leaf drag area encountered by flows within the canopy. For air parcel releases in the upper canopy, the increased in-canopy turbulence associated with defoliation shifted the footprint peak probability closer to the measurement point. However, when integrated through the depth of the canopy, the net effect of defoliation was to increase the upwind source areas farther from the flux measurement point. Defoliation also impacted air parcel residence times within the canopy. Under fully foliated conditions, air parcels remained within the canopy for periods ranging from 2 to 50 min, depending on levels of atmospheric turbulence and air parcel release height. Under 25–75% defoliated conditions, air parcels remained in the forest canopy for periods lasting less than 10 min. The estimated air parcel residence times inside the fully leafed canopy resulted in significant isoprene chemical processing. Based on Lagrangian footprint simulations with active chemistry, the integrated rates of isoprene destruction from reactions with ozone, hydroxyl, and nitrate radicals ranged from 12% for air parcels released in the upper canopy to 40% for air parcels released from the lower canopy. We conclude that active scalar flux estimates, often based only on the footprint transfer function and source strength distribution, can be substantially improved by incorporating an active chemistry term. # 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrocarbon fluxes above a Scots pine forest canopy: measurements and modeling

We measured the fluxes of several hydrocarbon species above a Scots pine (Pinus sylvestris) stand using disjunct eddy covariance technique with proton transfer reaction – mass spectrometry. The measurements were conducted during four days in July at SMEAR II research station in Hyytiälä, Finland. Compounds which showed significant emission fluxes were methanol, acetaldehyde, acetone, and monote...

متن کامل

Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle

The energy balance components were measured above the ground surface of a temperate deciduous forest over an annual cycle using the eddy covariance technique. Over a year, the net radiation at the forest floor was 21.5% of that above the canopy, but this proportion was not constant, primarily because of the distinct phenological stages separated by the emergence and senescence of leaves. The do...

متن کامل

Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry

Within the framework of the AFO 2000 project ECHO, two PTR-MS instruments were operated in combination with sonic anemometers to determine biogenic VOC fluxes from a mixed deciduous forest site in North-Western Germany. The measurement site was characterised by a forest of inhomogeneous composition, complex canopy structure, limited extension in certain wind directions and frequent calm wind co...

متن کامل

Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest

In order to evaluate factors controlling transpiration of six common eastern deciduous species in North America, a model describing responses of canopy stomatal conductance (GS) to net radiation (RN), vapor pressure deficit (D) and relative extractable soil water (REW) was parameterized from sap flux data. Sap flux was measured in 24 mature trees consisting of the species Carya tomentosa, Querc...

متن کامل

Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere

[1] Tropospheric ozone (O3) effectively deposits to forested ecosystems but the fate of O3 within the forest canopy is unresolved. We partitioned total measured ecosystem daytime O3 deposition to a ponderosa pine (Pinus ponderosa) forest into its major loss pathways; stomatal uptake, non-stomatal surface deposition, and gas-phase chemistry. Total O3 flux was dominated by gas-phase chemistry dur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004