In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice.
نویسندگان
چکیده
RATIONALE During the transition from compensated hypertrophy to heart failure, the signaling between L-type Ca(2+) channels in the cell membrane/T-tubules and ryanodine receptors in the sarcoplasmic reticulum becomes defective, partially because of the decreased expression of a T-tubule-sarcoplasmic reticulum anchoring protein, junctophilin-2. MicroRNA (miR)-24, a junctophilin-2 suppressing miR, is upregulated in hypertrophied and failing cardiomyocytes. OBJECTIVE To test whether miR-24 suppression can protect the structural and functional integrity of L-type Ca(2+) channel-ryanodine receptor signaling in hypertrophied cardiomyocytes. METHODS AND RESULTS In vivo silencing of miR-24 by a specific antagomir in an aorta-constricted mouse model effectively prevented the degradation of heart contraction, but not ventricular hypertrophy. Electrophysiology and confocal imaging studies showed that antagomir treatment prevented the decreases in L-type Ca(2+) channel-ryanodine receptor signaling fidelity/efficiency and whole-cell Ca(2+) transients. Further studies showed that antagomir treatment stabilized junctophilin-2 expression and protected the ultrastructure of T-tubule-sarcoplasmic reticulum junctions from disruption. CONCLUSIONS MiR-24 suppression prevented the transition from compensated hypertrophy to decompensated hypertrophy, providing a potential strategy for early treatment against heart failure.
منابع مشابه
In Vivo Suppression of MiR-24 Prevents the Transition toward Decompensated Hypertrophy in Aortic-constricted Mice
متن کامل
Microsoft Word - 300806-R1_PAP_01_10_13
Rationale: During the transition from compensated hypertrophy to heart failure, the signaling between L-type Ca 2+ channels (LCCs) in the cell membrane/T-tubules (TTs) and ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) becomes defective, partially due to the decreased expression of a TT-SR anchoring protein, junctophilin-2 (JP2). MiR-24, a JP2 suppressing microRNA, is up-regulate...
متن کاملInhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload.
BACKGROUND Rapamycin is a specific inhibitor of the mammalian target of rapamycin (mTOR). We recently reported that administration of rapamycin before exposure to ascending aortic constriction significantly attenuated the load-induced increase in heart weight by approximately 70%. METHODS AND RESULTS To examine whether rapamycin can regress established cardiac hypertrophy, mice were subjected...
متن کاملComprehensive Microarray Analysis Identify Dysregulated MicroRNAs in Pressure Overload Affected Hearts
Background: MicroRNAs (miRNAs) are emerging as key regulators of cardiovascular development and disease, being involved in cardiac hypertrophy, fibrosis, remodeling and heart failure. Aortic stenosis is the most common valvular heart disease, and thus, we undertook a detailed analysis of differentially expressed miRNAs in this disease. Methods and Findings: We set up a model of aortic stenosis ...
متن کاملRole of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 112 4 شماره
صفحات -
تاریخ انتشار 2013