Transcript Secure Signatures Based on Modular Lattices
نویسندگان
چکیده
We introduce a class of lattice-based digital signature schemes based on modular properties of the coordinates of lattice vectors. We also suggest a method of making such schemes transcript secure via a rejection sampling technique of Lyubashevsky (2009). A particular instantiation of this approach is given, using NTRU lattices. Although the scheme is not supported by a formal security reduction, we present arguments for its security and derive concrete parameters (first version) based on the performance of state-of-the-art lattice reduction and enumeration techniques. In the revision, we re-evaluate the security of first version of the parameter sets, under the hybrid approach of lattice reduction attack the meet-in-the-middle attack. We present new sets of parameters that are robust against this attack, as well as all previous known attacks.
منابع مشابه
Forward-Secure Identity-Based Shorter Blind Signature from Lattices
Blind signature (BS) plays one of key ingredients in electronic cash or electronic voting system. However, the key exposures bring out very serious problems in insecure mobile devices. Forward-secure blind signatures preserve the validity of past signatures and prevent a forger from forging past signatures even if current secret key has been compromised. In this paper, we propose the first forw...
متن کاملLattice Signatures without Trapdoors
We provide an alternative method for constructing lattice-based digital signatures which does not use the “hash-and-sign” methodology of Gentry, Peikert, and Vaikuntanathan (STOC 2008). Our resulting signature scheme is secure, in the random oracle model, based on the worst-case hardness of the Õ(n)-SIVP problem in general lattices. The secret key, public key, and the signature size of our sche...
متن کاملForward-Secure Signatures with Fast Key Update
In regular digital signatures, once the secret key is compromised, all signatures, even those that were issued by the honest signer before the compromise, will not be trustworthy any more. Forward-secure signatures have been proposed to address this major shortcoming. We present a new forward-secure signature scheme, called KREUS, with several advantages. It has the most efficient Key Update of...
متن کاملTESLA: Tightly-Secure Efficient Signatures from Standard Lattices
Generally, lattice-based cryptographic primitives offer good performance and allow for strong security reductions. However, the most efficient current lattice-based signature schemes sacrifice (part of its) security to achieve good performance: first, security is based on ideal lattice problems, that might not be as hard as standard lattice problems. Secondly, the security reductions of the mos...
متن کاملCRT RSA Algorithm Protected Against Fault Attacks
Embedded devices performing RSA signatures are subject to Fault Attacks, particularly when the Chinese Remainder Theorem is used. In most cases, the modular exponentiation and the Garner recombination algorithms are targeted. To thwart Fault Attacks, we propose a new generic method of computing modular exponentiation and we prove its security in a realistic fault model. By construction, our pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014