On Local Uniformization in Arbitrary Characteristic

نویسنده

  • Franz-Viktor Kuhlmann
چکیده

We prove that every place of an algebraic function eld of arbitrary characteristic admits a local uniformization in a nite extension of the function eld. We give a valuation theoretical description of these extensions; in certain cases, they can be found in the henselization of the function eld. For places satisfying the Abhyankar equality and for discrete rational places, no extension is needed if the base eld is perfect. Our proof is based solely on valuation theoretical theorems which are of fundamental importance in positive characteristic. It provides additional assertions (which in general do not hold without extensions).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ar 1 99 9 On local uniformization in arbitrary characteristic I Franz – Viktor Kuhlmann

We prove that every place of an algebraic function field F |K of arbitrary characteristic admits local uniformization in a finite extension F of F. We show that F|F can be chosen to be normal. If K is perfect and P is of rank 1, then alternatively, F can be obtained from F by at most two Galois extensions; if in addition P is zero-dimensional, then we only need one Galois extension. Certain rat...

متن کامل

Abhyankar places admit local uniformization in any characteristic

We prove that every place P of an algebraic function field F |K of arbitrary characteristic admits local uniformization, provided that the sum of the rational rank of its value group and the transcendence degree of its residue field FP over K is equal to the transcendence degree of F |K, and the extension FP |K is separable. We generalize this result to the case where P dominates a regular loca...

متن کامل

Every place admits local uniformization in a finite extension of the function field

We prove that every place P of an algebraic function field F |K of arbitrary characteristic admits local uniformization in a finite extension F of F . We show that F|F can be chosen to be Galois, after a finite purely inseparable extension of the ground field K. Instead of being Galois, the extension can also be chosen such that the induced extension FP |FP of the residue fields is purely insep...

متن کامل

Fe b 20 07 Every place admits local uniformization in a finite extension of the function field

We prove that every place P of an algebraic function field F |K of arbitrary characteristic admits local uniformization in a finite extension F of F. We show that F|F can be chosen to be Galois, after a finite purely inseparable extension of the ground field K. Instead of being Galois, the extension can also be chosen such that the induced extension FP |F P of the residue fields is purely insep...

متن کامل

Computing shortest homotopic cycles on polyhedral surfaces with hyperbolic uniformization metric

The problem of computing shortest homotopic cycles on a surface has various applications in computational geometry and graphics. In general, shortest homotopic cycles are not unique, and local shortening algorithms can become stuck in local minima. For surfaces with negative Euler characteristic that can be given a hyperbolic uniformization metric, however, we show that they are unique and can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997