A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2.
نویسندگان
چکیده
We describe an open leaf gas exchange system coupled to a tunable diode laser (TDL) spectroscopy system enabling measurement of the leaf respiratory CO(2) flux and its associated carbon isotope composition (delta(13)C(Rl)) every 3 min. The precision of delta(13)C(Rl) measurement is comparable to that of traditional mass spectrometry techniques. delta(13)C(Rl) from castor bean (Ricinus communis L.) leaves tended to be positively related to the ratio of CO(2) produced to O(2) consumed [respiratory quotient (RQ)] after 24-48 h of prolonged darkness, in support of existing models. Further, the apparent fractionation between respiratory substrates and respired CO(2) within 1-8 h after the start of the dark period was similar to previous observations. In subsequent experiments, R. communis plants were grown under variable water availability to provide a range in delta(13)C of recently fixed carbohydrate. In leaves exposed to high light levels prior to the start of the dark period, CO(2) respired by leaves was up to 11 per thousand more enriched than phloem sap sugars within the first 10-15 min after plants had been moved from the light into the dark. The (13)C enrichment in respired CO(2) then decreased rapidly to within 3-7 per thousand of phloem sap after 30-60 min in the dark. This strong enrichment was not observed if light levels were low prior to the start of the dark period. Measurements of RQ confirmed that carbohydrates were the likely respiratory substrate for plants (RQ > 0.8) within the first 60 min after illumination. The strong (13)C enrichment that followed a high light-to-dark transition coincided with high respiration rates, suggesting that so-called light-enhanced dark respiration (LEDR) is fed by (13)C-enriched metabolites.
منابع مشابه
Ecological Interpretation of Leaf Carbon Isotope Ratios: Influence of Respired Carbon Dioxide
In a Neotropical moist forest at Barro Colorado Island, Panama, 6'3C values of CO2 in air and (13C values of leaf tissue exhibit parallel patterns of variation between the forest floor and the canopy. During the daytime, 613C values of CO2 from air sampled at 1 m and 0.5 m were significantly less than that at 25 m. Based on mass balance equations, up to 18% of the CO2 in air at 0.5 m above the ...
متن کاملEffects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species
Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbace...
متن کاملRespiratory Carbon Metabolism following Illumination in Intact French Bean Leaves Using C/C Isotope Labeling
The origin of the carbon atoms in the CO2 respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using C/C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO2 respired in th...
متن کاملCarbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium.
The carbon-isotopic composition (delta13C) of soil-respired CO2 has been employed to evaluate soil carbon-cycling processes and the contribution of soil CO2 emissions to canopy and tropospheric air. These evaluations can be successful only when accurate isotope values of soil-respired CO2 are available. Here, we tested the robustness of delta13C values of soil-respired CO2 obtained after long i...
متن کاملDrought Sensitivity of the Carbon Isotope Composition of Leaf Dark-Respired CO2 in C3 (Leymus chinensis) and C4 (Chloris virgata and Hemarthria altissima) Grasses in Northeast China
Whether photosynthetic pathway differences exist in the amplitude of nighttime variations in the carbon isotope composition of leaf dark-respired CO2 (δ13Cl) and respiratory apparent isotope fractionation relative to biomass (ΔR,biomass) in response to drought stress is unclear. These differences, if present, would be important for the partitioning of C3-C4 mixed ecosystem C fluxes. We measured...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2007