The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway.

نویسندگان

  • J L Bailey
  • X Wang
  • B K England
  • S R Price
  • X Ding
  • W E Mitch
چکیده

Chronic renal failure (CRF) is associated with negative nitrogen balance and loss of lean body mass. To identify specific proteolytic pathways activated by CRF, protein degradation was measured in incubated epitrochlearis muscles from CRF and sham-operated, pair-fed rats. CRF stimulated muscle proteolysis, and inhibition of lysosomal and calcium-activated proteases did not eliminate this increase. When ATP production was blocked, proteolysis in CRF muscles fell to the same level as that in control muscles. Increased proteolysis was also prevented by feeding CRF rats sodium bicarbonate, suggesting that activation depends on acidification. Evidence that the ATP-dependent ubiquitin-proteasome pathway is stimulated by the acidemia of CRF includes the following findings: (a) An inhibitor of the proteasome eliminated the increase in muscle proteolysis; and (b) there was an increase in mRNAs encoding ubiquitin (324%) and proteasome subunits C3 (137%) and C9 (251%) in muscle. This response involved gene activation since transcription of mRNAs for ubiquitin and the C3 subunit were selectively increased in muscle of CRF rats. We conclude that CRF stimulates muscle proteolysis by activating the ATP-ubiquitin-proteasome-dependent pathway. The mechanism depends on acidification and increased expression of genes encoding components of the system. These responses could contribute to the loss of muscle mass associated with CRF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription.

In normal subjects and diabetic patients, insulin suppresses whole body proteolysis suggesting that the loss of lean body mass and muscle wasting in insulinopenia is related to increased muscle protein degradation. To document how insulinopenia affects organ weights and to identify the pathway for accelerated proteolysis in muscle, streptozotocin-treated and vehicle-injected, pair-fed control r...

متن کامل

Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting.

The ubiquitin-proteasome proteolytic system is stimulated in conditions causing muscle atrophy. Signals initiating this response in these conditions are unknown, although glucocorticoids are required but insufficient to stimulate muscle proteolysis in starvation, acidosis, and sepsis. To identify signals that activate this system, we studied acutely diabetic rats that had metabolic acidosis and...

متن کامل

Proteolysis, the ubiquitin-proteasome system, and renal diseases.

Protein degradation is a critical process for the growth and function of cells. Proteolysis eliminates abnormal proteins, controls many cellular regulatory processes, and supplies amino acids for cellular remodeling. When substrates of proteolytic pathways are poorly recognized or there is mistiming of proteolysis, profound changes in cell function can occur. Based on these potential problems, ...

متن کامل

Insights into the abnormalities of chronic renal disease attributed to malnutrition.

Low values of serum proteins and loss of lean body mass are commonly found in patients with chronic renal insufficiency (CRI) and especially in dialysis patients. These abnormalities have been attributed to malnutrition (i.e., an inadequate diet), but available evidence indicates that this is not the principal cause. In contrast, there is persuasive evidence that secondary factors associated wi...

متن کامل

Regulation of ATP-ubiquitin-dependent proteolysis in muscle wasting.

Protein breakdown plays a major role in muscle growth and atrophy. However, the regulation of muscle proteolysis by nutritional, hormonal and mechanical factors remains poorly understood. In this review, the methods available to study skeletal muscle protein breakdown, and our current understanding of the role of 3 major proteolytic systems that are well characterized in this tissue (ie the lys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 97 6  شماره 

صفحات  -

تاریخ انتشار 1996