Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry
نویسندگان
چکیده
This paper is addressed to readers without advanced knowledge of remote sensing. It illustrates some current and potential uses of satellite Synthetic Aperture Radar interferometry (InSAR) for landslide assessment. Data acquired by SAR systems can provide 3D terrain models and be used to assist in regional scale investigations, e.g. aimed at evaluation of susceptibility of slopes to failure. Under favourable environmental conditions, the innovative Permanent Scatterers (PS) technique, which overcomes several limitations of conventional SAR differential interferometry (DInSAR) applications in landslide studies, is suitable for monitoring slope deformations with millimetric precision. The PS technique combines the wide-area coverage typical of satellite imagery with the capability of providing displacement data relative to individual image pixels. With the currently available radar satellites, however, only very slow ground surface displacements can be reliably detected and measured. The presented case study of a landslide from the Liechtenstein Alps indicates that the most attractive and reliable contribution provided by this remote sensing technique lies in the possibility of (i.) wide-area qualitative distinction between stable and unstable areas and (ii.) qualitative (relative) hazard zonation of large, slow landslides based on the identification of segments characterised by different movement rates. Since only the radar line of sight projection of the displacements can be detected, a quantitative exploitation of the PS data is possible only where sufficient ground truth is available. In site specific or single landslide investigations the PS data can represent a very useful complementary data source with respect to the information acquired through ground based observations and in situ surveying. However, the difficulties associated with the feasibility assessments of the applicability of SAR data to local scale problems, as well as with the interpretation of PS results, require a close collaboration between landslide experts and specialists in advanced processing of radar satellite data. The interpretation of the exact geotechnical significance of small, radar sensed ground surface deformations is challenging, especially where ground truth is lacking. Although any ground deformation is potentially of interest to an engineering geologist, detection of movements in both vertical and horizontal directions is needed in the case of landslides to evaluate slope failure mechanisms. With their high radar viewing angles, however, the current space-borne systems can detect only a fraction of the horizontal component of movement. It is expected that the upcoming SAR dedicated missions with new sensors and different acquisition geometries, combined with the rapid developments in the field of advanced radar data processing, will allow a full 3D reconstruction of deformation data and help to further reduce the current limitations of the PS and similar DInSAR approaches. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Interferometry SAR for landslide Hazard Assessment in Garhwal Himalaya, India
Landslides are a major geological hazard in Garhwal Himalayas, since they are widespread dynamic processes that cause damage, and even loss of life, every year. Development of urban areas, Highway construction and expanded land use in Garhwal Himalaya mountain regions has increased the incidence of landslide disasters. The enormous damage caused by landslides can be reduced by means of monitori...
متن کاملDetermination of the displacement rate of the Masouleh landslide for management of landslide risk by Radar Interferometry
One of the most common natural phenomena occurring in mountainous regions of the world is landslide which causes critical damages and is considered as a natural disaster. Iran is a country which annually suffers from this disaster and its consequent damage of about 500 billion Rial. Over the last 15 years, an increasing number of researches have aimed to demonstrate the applicability of the im...
متن کاملGround-based SAR interferometry as a supporting tool in natural and man-made distasters
In this work we present some applications of Ground-Based Synthetic Aperture Radar (GBSAR) interferometry to the monitoring of dams, bridges and landslides. A SAR system is a coherent active microwave device able to provide 2D refractivity images of a given area with high spatial resolution, independently of weather conditions and day-night cycle. SAR interferometry is the most notable applicat...
متن کاملRADAR POLARIMETRY AND INTERFEROMETRY: Past, Present and Future Trends
Recent developments of wave polarization effects in radar remote sensing are summarized in historical sequence resulting in Radar Polarimetry, Radar Interferometry and Polarimetric SAR Interferometry, which represent the current culmination in airborne and space borne ‘Microwave Remote Sensing’ technology. Whereas with radar polarimetry the textural fine-structure, target orientation, symmetrie...
متن کاملInSAR processing for the recognition of landslides
Synthetic Aperture Radar Interferometry (InSAR) is an established method for the detection and monitoring of earth surface processes. This approach has been most successful where the observed area fulfills specific requirements, such as sufficient backscattering, flat slope gradients or very slow changes of vegetation. We investigated the capability of two different InSAR techniques and achieve...
متن کامل