ODtimization Flow Control-I: Basic Algorithm I and Convergence
نویسندگان
چکیده
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources’ decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly timevarying environment. We discuss its fairness property.
منابع مشابه
On I-statistical Convergence
In the present paper, we investigate the notion of I -statistical convergence and introduce I -st limit points and I -st cluster points of real number sequence and also studied some of its basic properties.
متن کاملCorrection to Low and Lapsley's article "Optimization Flow Control, I: Basic Algorithm and Convergence"
In the note an error in Low and Lapsley’s article [1] is pointed out. Because of this error the proof of the Theorem 2 presented in the article is incomplete and
متن کاملSecond Order Sliding Mode Control With Finite Time Convergence
In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed algorithm which is able to control nonlinear systems with matched structured u...
متن کاملOn $I$-statistical and $I$-lacunary statistical convergence of order $alpha$
In this paper, following a very recent and new approach, we further generalize recently introduced summability methods, namely, $I$-statistical convergence and $I$-lacunary statistical convergence (which extend the important summability methods, statistical convergence and lacunary statistical convergence using ideals of $mathbb{N}$) and introduce the notions of $I$-statis...
متن کامل$mathcal{I}_2$-convergence of double sequences of\ fuzzy numbers
In this paper, we introduce and study the concepts of $mathcal{I}_2$-convergence, $mathcal{I}_2^{*}$-convergence for double sequences of fuzzy real numbers, where $mathcal{I}_2$ denotes the ideal of subsets of $mathbb N times mathbb N$. Also, we study some properties and relations of them.
متن کامل