Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review

نویسندگان

  • A. S. Sheoran
  • V. Sheoran
چکیده

Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. Water infiltrating through the metal sulphide minerals, effluents of mineral processing plants and seepage from tailing dams becomes acidic and this acidic nature of the solution allows the metals to be transported in their most soluble form. The conventional treatment technologies used in the treatment of acid mine drainage are expensive both in terms of operating and capital costs. One of the methods of achieving compliance using passive treatment systems at low cost, producing treated water pollution free, and fostering a community responsibility for acid mine water treatment involves the use of wetland treatment system. These wetlands absorb and bind heavy metals and make them slowly concentrated in the sedimentary deposits to become part of the geological cycle. In this paper a critical review of the heavy metal removal mechanism involving various physical, chemical and biological processes, which govern wetland performance, have been made. This information is important for the siting and use of wetlands for remediation of heavy metals. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxic metal removal from aqueous solution by advanced Carbon allotropes: a case study from the Sungun Copper Mine

The sorption efficiencies of graphene oxide (GO) and functionalized multi-walled carbon nanotubes (f-MWCNTs) were investigated and elucidated to study their potential in treating acid mine drainage (AMD) containing Cu2+, Mn2+, Zn2+, Pb2+, Fe3+ and Cd2+ metal ions. Several layered GO nanosheets and f-MWCNTs were formed via the modified Hummers’ method and the acid treatment of the MWCNTs, respec...

متن کامل

Magnetic Nano mineral and acid mine drainage interaction: An experimental study

In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical aspects of the magnetic Nano- mineral surfaces are studied in contrast to acid mine d...

متن کامل

Ion exchange system design for removal of heavy metals from acid mine drainage wastewater

This paper discusses the methodology used to determine the optimal ion-exchange column size to process all separate batches of feeds from acid mine drainage wastewater. The optimal design ensures the best utilization of resin material and therefore results in a minimum amount of spent resins. Ion exchanger materials have been studied for removing heavy metals from a metal bearing wastes. For th...

متن کامل

Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.

Mine drainage waters vary considerably in the range and concentration of heavy metals they contain. Besides iron, manganese is frequently present at elevated concentrations in waters draining both coal and metal mines. Passive treatment systems (aerobic wetlands and compost bioreactors) are designed to remove iron by biologically induced oxidation/precipitation. Manganese, however, is problemat...

متن کامل

نقش زهاب اسیدی معدن در تشکیل کانی‌های زیست محیطی در معادن زغالسنگ کارمزد، البرز مرکزی، استان مازندران

Nowadays, acid mine drainage (AMD) is one of the most important problems in coal mine contamination. The Karmozd coal mines in Mazandaran Province are one of the largest and oldest coal extractions in Central Alborze Coal Basin. The samples of coals, host rocks, mine drainages and secondary surface minerals have been collected in summer season of 2005. On the basis of hydrogeochemistry studies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006