Right-angled Artin Groups and a Generalized Isomorphism Problem for Finitely Generated Subgroups of Mapping Class Groups
نویسندگان
چکیده
Consider the mapping class group Modg,p of a surface Σg,p of genus g with p punctures, and a finite collection {f1, . . . , fk} of mapping classes, each of which is either a Dehn twist about a simple closed curve or a pseudo-Anosov homeomorphism supported on a connected subsurface. In this paper we prove that for all sufficiently large N , the mapping classes {f 1 , . . . , f k } generate a right-angled Artin group. The right-angled Artin group which they generate can be determined from the combinatorial topology of the mapping classes themselves. When {f1, . . . , fk} are arbitrary mapping classes, we show that sufficiently large powers of these mapping classes generate a group which embeds in a right-angled Artin group in a controlled way. We establish some analogous results for real and complex hyperbolic manifolds. We also discuss the unsolvability of the isomorphism problem for finitely generated subgroups of Modg,p, and recover the fact that the isomorphism problem for right-angled Artin groups is solvable. We thus characterize the isomorphism type of many naturally occurring subgroups of Modg,p.
منابع مشابه
The geometry of purely loxodromic subgroups of right-angled Artin groups
We prove that finitely generated purely loxodromic subgroups of a right-angled Artin group A(Γ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups Mod(S). In particular, such subgroups are quasiconvex in A(Γ). In addition, we identify a milder condition for a finitely generated subgroup of A(Γ) that guarantees it is free, undistorted, a...
متن کاملAnti-trees and right-angled Artin subgroups of braid groups
We prove that an arbitrary right-angled Artin group G admits a quasi-isometric group embedding into a right-angled Artin group defined by the opposite graph of a tree. Consequently, G admits quasi-isometric group embeddings into a pure braid group and into the area-preserving diffeomorphism groups of the 2–disk and the 2–sphere, answering questions due to Crisp–Wiest and M. Kapovich. Another co...
متن کاملCryptography with right-angled Artin groups
In this paper we propose right-angled Artin groups as platform for a secret sharing scheme based on the efficiency (linear time) of the word problem. We define two new problems: subgroup isomorphism problem for Artin subgroups and group homomorphism problem in right-angled Artin groups. We show that the group homomorphism and graph homomorphism problems are equivalent, and the later is known to...
متن کاملMorse Theory and Conjugacy Classes of Finite Subgroups
We construct a CAT(0) group containing a finitely presented subgroup with infinitely many conjugacy classes of finiteorder elements. Unlike previous examples (which were based on right-angled Artin groups) our ambient CAT(0) group does not contain any rank 3 free abelian subgroups. We also construct examples of groups of type Fn inside mapping class groups, Aut(Fk), and Out(Fk) which have infin...
متن کاملOn subgroups of right angled Artin groups with few generators
For each d ∈ N we construct a 3-generated group Hd, which is a subdirect product of free groups, such that the cohomological dimension of Hd is d. Given a group F and a normal subgroup N C F we prove that any right angled Artin group containing the special HNN-extension of F with respect to N must also contain F/N . We apply this to construct, for every d ∈ N, a 4-generated group Gd, embeddable...
متن کامل