Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption.
نویسندگان
چکیده
Lifetime prolongation for hydrophobic drug carriers has been the focus of interest for many years. Poloxamer (Pluronic F68, PF68) has been employed in this study for modifying the surface of magnetic poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with human serum albumin (HSA) model drug. Surface characteristics of untreated and PF68 treated NPs were analyzed by size, zeta potential and electrophoretic mobility studies. UV-vis spectroscopic analysis, isothermal titration calorimetry (ITC) and dynamic light scattering methods were used to investigate serum protein (bovine serum albumin, BSA) adsorption. Results showed the successful surface attachment of PF68. Among different concentrations (0.1-1%, wt/vol) of PF68 studied, 0.5% was found to be the most useful, since a higher concentration can issue in micelle formation. 50% less BSA tended to be adsorbed on the treated NPs in comparison to the untreated ones.
منابع مشابه
Efficient Chemotherapy of Rat Glioblastoma Using Doxorubicin-Loaded PLGA Nanoparticles with Different Stabilizers
BACKGROUND Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery ...
متن کاملPreparation of protein-loaded PLGA-PVP blend nanoparticles by nanoprecipitation method: entrapment, Initial burst and drug release kinetic studies
Objective(s):Despite of wide range applications of polymeric nanoparticles in protein delivery, there are some problems for the field of protein entrapment, initial burst and controlled release profile. Materials and Methods: In this study, we investigated the influence of some changes in PLGA nanoparticles formulation to improve the initial and controlled release profile. Selected parameters ...
متن کاملSelective Magnetic Removal of Pb(II) from Aqueous Solution by Porphyrin Linked-Magnetic Nanoparticles
The discharge of lead containing effluents into the environment and water bodies is harmful for the human, animals, aquatic flora and fauna. Herein, a novel surface engineered magnetic nanoparticle for removing Pb2+ ions was studied. After surface modification of the magnetite by 3-amino-propyltriethoxysilane (APTES) magnetic nanoparticles with covalently linked porphyrins were synthesize...
متن کاملModification of CoFe2O4 Magnetic Nanoparticles by Dopamine and Ascorbic Acid as Anchors
CoFe2O4 magnetic nanoparticles were modified by dopamine (DA) and ascorbic acid (AA) as anchors. Separation of the DA and AA using CoFe2O4 magnetic nanoparticles have been studied by investigating the effects of pH, concentration of the DA and AA, amount of adsorbents, contact time, ionic strength and temperature. The mechanism of adsorption was also studied. The adsorption of DA and AA to the ...
متن کاملNanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules
Targeted drug delivery to outer hair cells (OHCs) in the cochlea by nanomedicine strategies forms an effective therapeutic approach for treating hearing loss. Surface chemistry plays a deciding role in nanoparticle (NP) biodistribution, but its influence on such distribution in the cochlea remains largely unknown. Herein, we report the first systematic comparison of poly(lactic/glycolic acid) n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 122 شماره
صفحات -
تاریخ انتشار 2014