Sensitivity of force-detected NMR spectroscopy with resonator-induced polarization

نویسندگان

  • Mark C. Butler
  • Daniel P. Weitekamp
  • A. A. Noyes
چکیده

In the low-temperature regime where the thermal polarization P is of order unity and spin-lattice relaxation is “frozen out,” resonator-induced relaxation can be used to polarize a nuclear-spin sample for optimal detection sensitivity. We characterize the potential of resonator-induced polarization for enhancing the sensitivity of nuclear-magnetic-resonance spectroscopy. The sensitivities of two detection schemes are compared, one involving detection of a polarized sample dipole and the other involving detection of spin-noise correlations in an unpolarized sample. In the case where the dominant noise source is instrument noise associated with resonator fluctuations and with detection of the mechanical motion, a simple criterion can be used to compare the two schemes. Polarizing the sample improves sensitivity when P is larger than the signal-to-noise ratio for detection of a fully-polarized spin during a single transient. Even if the instrument noise is decreased to a level near the quantum-mechanical limit, it is larger than spin noise for unpolarized samples containing up to a few tens of nuclei. Under these conditions, spin polarization of order unity would enhance spectroscopic detection sensitivity by an order of magnitude or more. In the limiting case where signal decay is due to resonator-induced dissipation during ideal spin locking, and where resonator fluctuations are the noise source, the only parameter of the spin-resonator system that affects the sensitivity per spin is the ratio of frequency to temperature. A balance between the coupling strength, the noise power, and the signal lifetime causes the cancellation of other parameters from the sensitivity formula. Partial cancellation of parameters, associated with a balance between the same three quantities, occurs more generally when the resonator is both the dominant noise source and the dominant source of signal decay. An intrinsic sensitivity limit exists for resonant detection of coherent spin evolution, due to the fact that the detector causes signal decay by enhancing the spins’ spontaneous emission. For a single-spin sample, the quantum-limited signal-to-noise ratio for resonant detection is 1/3. In contrast to the sensitivity, the time required for sample polarization between transients depends strongly on resonator parameters. We discuss resonator design and show that for a torsional resonator, the coupling is optimal when the resonator’s magnetization remains aligned with the applied field during the mechanical oscillations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarization of nuclear spins by a cold nanoscale resonator

A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the lowtemperature limit where spin-lattice interactions are “frozen out,” spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of re...

متن کامل

Nanoscale torsional resonator for polarization and spectroscopy of nuclear spins.

We propose a torsional resonator that couples to the transverse spin dipole of an attached sample. The absence of relative motion eliminates a source of friction that would otherwise hinder nanoscale implementation. Enhanced spontaneous emission induced by the resonator relaxes the longitudinal spin dipole at a rate of ∼1  s⁻¹ in the low-temperature limit. With signal averaging, single-proton m...

متن کامل

Force detected electron spin resonance at 94 GHz.

Force detected electron spin resonance (FDESR) detects the presence of unpaired electrons in a sample by measuring the change in force on a mechanical resonator as the magnetization of the sample is modulated under magnetic resonance conditions. The magnetization is coupled to the resonator via a magnetic field gradient. It has been used to both detect and image distributions of electron spins,...

متن کامل

Parahydrogen Induced Polarization Studies Using a Continuous-Flow Homogeneous Hydrogenation Reactor

Nuclear magnetic resonance spectroscopy (NMR) is a valuable tool for obtaining structural and dynamical information of molecules. However, the method suffers from poor sensitivity compared to most other types of spectroscopy. In recent years, substantial efforts have been made to improve the sensitivity of the technique. Hyperpolarization methods such as parahydrogen induced polarization (PHIP)...

متن کامل

Design and performance analysis of a seismic grade resonance nano accelerometer

In this paper, design and performance analysis of a resonance nanosensor for earthquake low frequency geoacoustic waves detection is proposed. The model comprises of a proof mass suspended to the substrate, and a nanobeam attached to the intersection of the proof mass to the substrate. The nanobeam could be cosidered as a clamped-clamped nanoresonator actuated electrostartically. The induced ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013