An allosteric gating model recapitulates the biophysical properties of I K,L expressed in mouse vestibular type I hair cells
نویسندگان
چکیده
KEY POINTS Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low-voltage-activated outward rectifying K+ current, IK,L , whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K+ concentrations, altering the biophysical properties of IK,L . We found that in the absence of the calyx, IK,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of IK,L . ABSTRACT Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low-voltage-activated outward rectifying K+ current, IK,L . The biophysical properties and molecular profile of IK,L are still largely unknown. By using the patch-clamp whole-cell technique, we examined the voltage- and time-dependent properties of IK,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of IK,L were affected by an unstable K+ equilibrium potential (Veq K+ ). Both the outward and inward K+ currents shifted Veq K+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated IK,L showed a half-activation at -79.6 mV and a steep voltage dependence (2.8 mV). IK,L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The 'early' open states substantially contribute to IK,L activation at negative voltages. This study provides the first complete description of the 'native' biophysical properties of IK,L in adult mouse vestibular type I hair cells.
منابع مشابه
Developmental changes in two voltage-dependent sodium currents in utricular hair cells.
Two kinds of sodium current (I(Na)) have been separately reported in hair cells of the immature rodent utricle, a vestibular organ. We show that rat utricular hair cells express one or the other current depending on age (between postnatal days 0 and 22, P0-P22), hair cell type (I, II, or immature), and epithelial zone (striola vs. extrastriola). The properties of these two currents, or a mix, c...
متن کاملMembrane properties of chick semicircular canal hair cells in situ during embryonic development.
The electrophysiological properties of developing vestibular hair cells have been investigated in a chick crista slice preparation, from embryonic day 10 (E10) to E21 (when hatching would occur). Patch-clamp whole-cell experiments showed that different types of ion channels are sequentially expressed during development. An inward Ca(2+) current and a slow outward rectifying K(+) current (I(K(V)...
متن کاملDevelopment of K(+) and Na(+) conductances in rodent postnatal semicircular canal type I hair cells.
The rodent vestibular system is immature at birth. During the first postnatal week, vestibular type I and type II hair cells start to acquire their characteristic morphology and afferent innervation. We have studied postnatal changes in the membrane properties of type I hair cells acutely isolated from the semicircular canals (SCC) of gerbils and rats using whole cell patch clamp and report for...
متن کاملSyntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations
Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...
متن کاملSyntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations
Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...
متن کامل