Limitations of Poole–Frenkel Conduction in Bilayer HfO<sub>2</sub>/SiO<sub>2</sub> MOS Devices

نویسندگان

  • Richard G. Southwick
  • Justin Reed
  • Christopher Buu
  • Ross Butler
  • William B. Knowlton
چکیده

The gate leakage current of metal–oxide– semiconductors (MOSs) composed of hafnium oxide (HfO2) exhibits temperature dependence, which is usually attributed to the standard Poole–Frenkel (P–F) transport model. However, the reported magnitudes of the trap barrier height vary significantly. This paper explores the fundamental challenges associated with applying the P–F model to describe transport in HfO2/SiO2 bilayers in n/p MOS field-effect transistors composed of 3and 5-nm HfO2 on 1.1-nm SiO2 dielectric stacks. The extracted P–F trap barrier height is shown to be dependent on several variables including the following: the temperature range, method of calculating the electric field, electric-field range considered, and HfO2 thickness. P–F conduction provides a consistent description of the gate leakage current only within a limited range of the current values while failing to explain the temperature dependence of the 3-nm HfO2 stacks for gate voltages of less than 1 V, leaving other possible temperature-dependent mechanisms to be explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study of the Steel Cylinder Quenching in Water-based Nanofluids

In this study, some parameters such as quenching and boiling curves of a stainless steel cylindrical rod 80 mm long and having a diameter of 15 mm were experimentally obtained in saturate pure water and two nanofluids (SiO2 and TiO2) with 0.01 wt%. The cylinder was vertically lowered into the pool of saturated water and its temporal center temperature was measured by a the...

متن کامل

A silicon-on-insulator polarization diversity scheme in the mid-infrared.

We propose a silicon-on-insulator (SOI) polarization diversity scheme in the mid-infrared wavelength range. In consideration of absorption loss in silicon dioxide (SiO2), the polarization splitter-rotator (PSR) is designed and optimized with silicon nitride (SiN) upper-cladding and SiO2 lower-cladding. This asymmetry allows the PSR, which consists of mode-conversion tapers...

متن کامل

Exciton and Trion Dynamics in Bilayer MoS<sub>2</sub>

PL spectra from bilayer MoS 2 could not be tuned by electric fi eld at room temperature owing to its indirect band gap manner, [ 7 ] which makes the exciton and trion dynamics in bilayer MoS 2 still underexplored. In this paper, we demonstrate the valley control of exciton and trion dynamics in bilayer MoS 2 , via the comodulations by both temperature and electric fi eld. We found that as tempe...

متن کامل

Corrosion Polarization Behavior of Al-SiO2 Composites in 1M and Related Microstructural Analysis

The composites combining aluminum and silica nanoparticles with the addition of tetramethylammonium hydroxide (Al-SiO2(T)) and butanol (Al-SiO2(B)) as mixing media have been successfully fabricated. Corrosion behavior of Al-SiO2 composites before and after exposure in 1M NaCl solution was examined using potentiodynamic polarization (Tafel curve analysis). The st...

متن کامل

TiO2/SiO2 prepared via facile sol-gel method as an ideal support for green synthesis of Ag nanoparticles using Oenothera biennis extract and their excellent catalytic performance in the reduction of 4-nitrophenol

In the present study, the extract of the plant of Oenothera biennis was used to green synthesis of silver nanoparticles (Ag NPs) as an environmentally friendly, simple and low cost method. And Additionally, TiO2/SiO2 was prepared via facile sol-gel method using starch as an important, naturally abundant organic polymer as an ideal support. The Ag NPs/TiO2/SiO<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016