NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis

نویسندگان

  • Jianxiao Shen
  • Ling Wang
  • Na Jiang
  • Shan Mou
  • Minfang Zhang
  • Leyi Gu
  • Xinghua Shao
  • Qin Wang
  • Chaojun Qi
  • Shu Li
  • Wanpeng Wang
  • Xiajing Che
  • Zhaohui Ni
چکیده

Iodinated contrast media serves as a direct causative factor of acute kidney injury (AKI) and is involved in the progression of cellular dysfunction and apoptosis. Emerging evidence indicates that NLRP3 inflammasome triggers inflammation, apoptosis and tissue injury during AKI. Nevertheless, the underlying renoprotection mechanism of NLRP3 inflammasome against contrast-induced AKI (CI-AKI) was still uncertain. This study investigated the role of NLRP3 inflammasome in CI-AKI both in vitro and in vivo. In HK-2 cells and unilateral nephrectomy model, NLRP3 and NLRP3 inflammasome member ASC were significantly augmented with the treatment of contrast media. Moreover, genetic disruption of NLRP3 notably reversed contrast-induced expression of apoptosis related proteins and secretion of proinflammatory factors, similarly to the effects of ASC deletion. Consistent with above results, absence of NLRP3 in mice undergoing unilateral nephrectomy also protected against contrast media-induced renal cells phenotypic alteration and cell apoptosis via modulating expression level of apoptotic proteins. Collectively, we demonstrated that NLRP3 inflammasome mediated CI-AKI through modulating the apoptotic pathway, which provided a potential therapeutic target for the treatment of contrast media induced acute kidney injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury.

We have demonstrated that caspase-1 is a mediator of both cisplatin-induced acute kidney injury (AKI) and ischemic AKI. As caspase-1 is activated in the inflammasome, we investigated the inflammasome in cisplatin-induced and ischemic AKI. Mice were injected with cisplatin or subjected to bilateral renal pedicle clamping. Immunoblot analysis of whole kidney after cisplatin-induced AKI revealed: ...

متن کامل

Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury

Aldosterone (Aldo) is an independent risk factor for chronic kidney disease (CKD), and although Aldo directly induces renal tubular cell injury, the underlying mechanisms remain unclear. NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS) have recently been implicated in various kinds of CKD. The present study hypothesized that mitochondrial ROS and NLRP3 inflammasome mediated Al...

متن کامل

Thioredoxin-Interacting Protein Mediates NLRP3 Inflammasome Activation Involved in the Susceptibility to Ischemic Acute Kidney Injury in Diabetes

Kidney in diabetic state is more sensitive to ischemic acute kidney injury (AKI). However, the underlying mechanisms remain unclear. Herein, we examined the impact of diabetes mellitus on thioredoxin-interacting protein (TXNIP) expression and whether mediated NLRP3 activation was associated with renal ischemia/reperfusion- (I/R-) induced AKI. In an in vivo model, streptozotocin-induced diabetic...

متن کامل

Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats

Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) in...

متن کامل

Ly6G+ neutrophil-derived miR-223 inhibits the NLRP3 inflammasome in mitochondrial DAMP-induced acute lung injury

MicroRNA (miRNA) mediates RNA interference to regulate a variety of innate immune processes, but how miRNAs coordinate the mechanisms underlying acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in patients with pulmonary inflammatory injury is still unknown. In this study, we demonstrated that miR-223 limits the number of Ly6G+ neutrophils and inhibits the activity of the NLRP3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016