Control of directionality in the DNA strand-exchange reaction catalysed by the tyrosine recombinase TnpI

نویسندگان

  • Virginie Vanhooff
  • Christophe Normand
  • Christine Galloy
  • Anca M. Segall
  • Bernard Hallet
چکیده

In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1-IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1-DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TnpI recombinase: identification of sites within Tn5401 required for TnpI binding and site-specific recombination.

The Bacillus thuringiensis class II transposon Tn5401 encodes a recombinase protein, TnpI, that mediates the resolution of cointegrate molecules generated as intermediates during Tn5401 transposition by the TnpA transposase. This recombination event requires a specific target site, or internal resolution site, at which TnpI binds and catalyzes the exchange of DNA strands. Gel mobility shift ass...

متن کامل

Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int

Flp, a tyrosine site-specific recombinase coded for by the selfish two micron plasmid of Saccharomyces cerevisiae, plays a central role in the maintenance of plasmid copy number. The Flp recombination system can be manipulated to bring about a variety of targeted DNA rearrangements in its native host and under non-native biological contexts. We have performed an exhaustive analysis of the Flp r...

متن کامل

Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase.

The naphthalene-catabolic (nah) genes on the incompatibility group P-9 (IncP-9) self-transmissible plasmid NAH7 from Pseudomonas putida G7 are some of the most extensively characterized genetic determinants for bacterial aerobic catabolism of aromatic hydrocarbons. In contrast to the detailed studies of its catabolic cascade and enzymatic functions, the biological characteristics of plasmid NAH...

متن کامل

Multiple roles for TnpI recombinase in regulation of Tn5401 transposition in Bacillus thuringiensis.

Tn5401 is a class II transposable element derived from the gram-positive bacterium Bacillus thuringiensis. The 4,837-bp transposon encodes a Tn3-like transposase (TnpA) and an integrase-like recombinase (TnpI) and is notable for its unusually long 53-bp terminal inverted repeats (TIRs). The tnpA and tnpI genes are transcribed from a common promoter, designated P(R), that is subject to negative ...

متن کامل

Homology-dependent interactions determine the order of strand exchange by IntDOT recombinase

The Bacteroides conjugative transposon CTnDOT encodes an integrase, IntDOT, which is a member of the tyrosine recombinase family. Other members of this group share a strict requirement for sequence identity within the region of strand exchange, called the overlap region. Tyrosine recombinases catalyze recombination by making an initial cleavage, strand exchange and ligation, followed by strand ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010