Viewpoint Not all iron superconductors are the same
نویسندگان
چکیده
We are facing a new paradigm in superconductivity research with the discovery of superconductivity in iron pnictides (LaFeAsO, SrFe2As2, BaFe2As2, etc.) and the iron chalcogenides (FeTe and FeSe). Both classes of ironbased materials, for some as yet unknown reason, have proven to be fertile ground for novel superconductivity, with the transition temperature of the pnictides racing above 50 K. A paper published in Physical Review Letters[1] from Yu Qi Xia and colleagues at Princeton University and the Lawrence Berkeley Laboratory, both in the US, in collaboration with Jiao Tong University in Shanghai, and the Institute of Physics of the Chinese Academy of Sciences in Beijing, leads, in concert with other recent experimental work [2, 3], to a remarkable conclusion: iron chalcogenides, in seeming contrast to the iron pnictides, do not exhibit the characteristic Fermisurface-induced magnetism, a spin-density-wave ordering, that the parent compounds of nearly all other ironbased superconductors share (see Fig. 1). The implication for the iron chalcogenides is that the magnetism arises from a different interaction than in the iron pnictides. This also means that in the chalcogenides either the electron pairing that leads to superconductivity and the magnetism arise from different interactions, or that the pairing arises from an interaction distinct from the Fermi-surface-driven itinerant spin fluctuations that are believed by many to create pairing in the iron pnictides.
منابع مشابه
Magnetic excitations in iron chalcogenide superconductors.
Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe1-x Te x and alkali-metal-doped Ax Fe2-y Se2 (A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the ...
متن کاملSpin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors
The symmetry of thewavefunction describing the Cooper pairs is one of the most fundamental quantities in a superconductor, but for iron-based superconductors it has proved to be problematic to determine, owing to their complex multi-band nature1–3. Here we use a first-principles many-body method, including the two-particle vertex function, to study the spin dynamics and the superconducting pair...
متن کاملSuperconductivity with a Twist
Superconductivity and magnetism are typically antithetical forms of order. After all, in conventional superconductors, magnetic impurities are destructive to superconductivity as they break Cooper pairs [1]. But the discovery in 1979 of so-called heavy fermion superconductivity, found near an antiferromagnetic phase, led to a shift in thinking on this subject [2]. Since then, some of the most i...
متن کاملObservation of universal strong orbital-dependent correlation effects in iron chalcogenides
Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measur...
متن کاملCoherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling
A new class of high-temperature superconductors based on iron and arsenic was recently discovered (Kamihara et al 2008 J. Am. Chem. Soc. 130 3296), with the superconducting transition temperature as high as 55K (Ren et al 2008 Chin. Phys. Lett. 25 2215). Here we show, using microscopic theory, that the normal state of the iron pnictides at high temperatures is highly anomalous, displaying a ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014