Topology and Higher-Dimensional Category Theory: the Rough Idea
نویسنده
چکیده
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. Although it can be treated purely as an algebraic subject, it is inherently topological in nature: the higher-dimensional diagrams one draws to represent these structures can be taken quite literally as pieces of topology. Examples of this are the braids in a braided monoidal category, and the pentagon which appears in the definitions of both monoidal category and A∞-space. I will try to give a Friday-afternoonish description of some of the dreams people have for higher-dimensional category theory and its interactions with topology. Grothendieck, for instance, suggested that tame topology should be the study of n-groupoids; others have hoped that an n-category of cobordisms between cobordisms between . . . will provide a clean setting for TQFT; and there is convincing evidence that the whole world of n-categories is a mirror of the world of homotopy groups of spheres. These are notes from talks given in London and Sussex in summer 2001. I thank Dicky Thomas and Roger Fenn for their invitations and the audiences for their comments, many of which are incorporated here. What I want to give you in the next hour is an informal description of what higher-dimensional category theory is and might be, and how it is relevant to topology. There will be no real theorems, proofs or definitions. But to whet your appetite, here’s a question which we’ll reach an answer to by the end: Question What is the close connection between the following two facts? A No-one ever got into trouble for leaving out the brackets in a tensor product of several objects (abelian groups, etc.). For instance, it’s safe to write A⊗B ⊗ C instead of (A⊗B)⊗ C or A⊗ (B ⊗ C). B There exist non-trivial knots (that is, knots which cannot be undone) in R.
منابع مشابه
Topological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملQuantum Algebra and Quantum Topology
I work in an area at the intersection of representation theory, low-dimensional topology, higher category theory, and operator algebras which is often referred to as quantum algebra or quantum topology. A practical description of this field is that it consists of the mathematics which is descended from the Jones polynomial [Jon85]. The unifying idea behind quantum topology is to consider a func...
متن کاملThe function ring functors of pointfree topology revisited
This paper establishes two new connections between the familiar function ring functor ${mathfrak R}$ on the category ${bf CRFrm}$ of completely regular frames and the category {bf CR}${mathbf sigma}${bf Frm} of completely regular $sigma$-frames as well as their counterparts for the analogous functor ${mathfrak Z}$ on the category {bf ODFrm} of 0-dimensional frames, given by the integer-valued f...
متن کاملCategorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respe...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کامل