Phase-parameter Relation and Sharp Statistical Properties for General Families of Unimodal Maps
نویسندگان
چکیده
We obtain precise estimates relating the phase space and the parameter space of analytic families of unimodal maps, which generalize the case of the quadratic family obtained in [AM1]. This result implies a statistical description of the dynamics of typical analytic quasiquadratic maps which is much sharper than what was previously known: as an example, we can conclude that the recurrence of the critical point is polynomial with exponent one. To complete the picture, we show that typical analytic non-regular unimodal maps admit a quasiquadratic renormalization, so that the previous result applies also without the quasiquadratic assumption. Those ideas lead to a new proof of a theorem of Shishikura: the set of non-renormalizable parameters in the boundary of the Mandelbrot set has zero Lebesgue measure. Further applications of those results can be found in the companion paper [AM3].
منابع مشابه
Statistical Properties of Unimodal Maps: Smooth Families with Negative Schwarzian Derivative
We prove that there is a residual set of families of smooth or analytic unimodal maps with quadratic critical point and negative Schwarzian derivative such that almost every non-regular parameter is Collet-Eckmann with subexponential recurrence of the critical orbit. Those conditions lead to a detailed and robust statistical description of the dynamics. This proves the Palis conjecture in this ...
متن کاملStatistical Properties of Unimodal Maps: the Quadratic Family Artur Avila and Carlos Gustavo Moreira
We prove that almost every real quadratic map is either regular or Collet-Eckmann with polynomial recurrence of the critical orbit. It follows that typical quadratic maps have excellent ergodic properties, as exponential decay of correlations (Keller and Nowicki, Young) and stochastic stability in the strong sense (Baladi and Viana). This is an important step to get the same results for more ge...
متن کاملStatistical Properties of Unimodal Maps: the Quadratic Family
We prove that almost every non-regular real quadratic map is Collet-Eckmann and has polynomial recurrence of the critical orbit (proving a conjecture by Sinai). It follows that typical quadratic maps have excellent ergodic properties, as exponential decay of correlations (Keller and Nowicki, Young) and stochastic stability in the strong sense (Baladi and Viana). This is an important step to get...
متن کاملIntermittency in families of unimodal maps
We consider intermittency in one parameter families of unimodal maps, induced by saddle node and boundary crisis bifurcations. In these bifurcations a periodic orbit or a periodic interval, respectively, disappears to give rise to chaotic bursts. We prove asymptotic formulae for the frequency with which orbits visit the region previously occupied by the attractor. For this, we extend results of...
متن کاملLaw of Iterated Logarithm and Invariance Principle for One-parameter Families of Interval Maps
We show that for almost every map in a transversal one-parameter family of piecewise expanding unimodal maps the Birkhoff sum of suitable observables along the forward orbit of the turning point satisfies the law of iterated logarithm. This result will follow from an almost sure invariance principle for the Birkhoff sum, as a function on the parameter space. Furthermore, we obtain a similar res...
متن کامل