Intracellular localization and loss of copper responsiveness of Mnk, the murine homologue of the Menkes protein, in cells from blotchy (Mo blo) and brindled (Mo br) mouse mutants.
نویسندگان
چکیده
Menkes disease is an X-linked copper deficiency disorder that results from mutations in the ATP7A ( MNK ) gene. A wide range of disease-causing mutations within ATP7A have been described, which lead to a diversity of phenotypes exhibited by Menkes patients. The mottled locus ( Mo, Atp7a, Mnk ) represents the murine homologue of the ATP7A gene, and the mottled mutants exhibit a diversity of phenotypes similar to that observed among Menkes patients. Therefore, these mutants are valuable models for studying Menkes disease. Two of the mottled mutants are brindled and blotchy and their phenotypes resemble classical Menkes disease and occipital horn syndrome (OHS) in humans, respectively. That is, the brindled mutant and patients with classical Menkes disease are severely copper deficient and have profound neurological problems, while OHS patients and the blotchy mouse have a much milder phenotype with predominantly connective tissue defects. In this study, in an attempt to understand the basis for the brindled and blotchy phenotypes, the copper transport characteristics and intracellular distribution of the Mnk protein were assessed in cultured cells from these mutants. The results demonstrated that the abnormal copper metabolism of brindled and blotchy cells may be related to a number of factors, which include the amount of Mnk protein, the intracellular location of the protein and the ability of Mnk to redistribute in elevated copper. The data also provide evidence for a relationship between the copper transport function and copper-dependent trafficking of Mnk.
منابع مشابه
Molecular basis of the brindled mouse mutant (Mo(br)): a murine model of Menkes disease.
The brindled mouse mutant (Mo(br)) is the closest animal model of the human genetic copper deficiency, Menkes disease, which is presumed to be due to a mutation at the X-linked mottled locus (Mo). The mutant mice are hypopigmented and die at around 15 days after birth, but can be saved by treatment with copper before the 10th postnatal day. Menkes disease has been shown to be due to mutations o...
متن کاملMutation analysis provides additional proof that mottled is the mouse homologue of Menkes' disease.
Menkes' disease (MD) and occipital horn syndrome (OHS) are allelic X-linked disorders caused by mutations in the copper ion transporting ATPase, ATP7A. Genetic, phenotypic and biochemical data suggest that mottled mutants in the mouse, which range in severity and phenotype, are caused by mutations in Atp7a, the mouse homologue of ATP7A. As the only causal mutation in Atp7a has been reported in ...
متن کاملOf mice and men, metals and mutations.
Several mutations affecting the transport of copper and zinc in humans and in mice have been discovered over the last 15 years, joining the long known disturbance of copper transport in Wilson's disease. Menkes' disease (classical and mild variant forms) and X linked Ehlers-Danlos syndrome (type IX, X linked cutis laxa) have features in common with one another and with the brindled (Mobr) and b...
متن کاملDefective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease.
Menkes disease is an X-linked disorder of copper metabolism. An overall copper deficiency reduces the activity of copper-dependent enzymes accounting for the clinical presentation of affected individuals. The Menkes gene product (MNK) is a P-type ATPase and is considered to be the main copper efflux protein in most cells. The protein is located primarily at the trans -Golgi network (TGN), but r...
متن کاملInvestigation of Iron Metabolism in Mice Expressing a Mutant Menke’s Copper Transporting ATPase (Atp7a) Protein with Diminished Activity (Brindled; MoBr/y)
During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a) is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1). Moreover, two ferroxidase proteins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 8 6 شماره
صفحات -
تاریخ انتشار 1999