Size and Energy of Threshold Circuits Computing Mod Functions

نویسندگان

  • Kei Uchizawa
  • Takao Nishizeki
  • Eiji Takimoto
چکیده

Let C be a threshold logic circuit computing a Boolean function MODm : {0, 1}n → {0, 1}, where n ≥ 1 and m ≥ 2. Then C outputs “0” if the number of “1”s in an input x ∈ {0, 1}n to C is a multiple of m and, otherwise, C outputs “1.” The function MOD2 is the so-called PARITY function, and MODn+1 is the OR function. Let s be the size of the circuit C, that is, C consists of s threshold gates, and let e be the energy complexity of C, that is, at most e gates in C output “1” for any input x ∈ {0, 1}n. In the paper, we prove that a very simple inequality n/(m − 1) ≤ s holds for every circuit C computing MODm. The inequality implies that there is a tradeoff between the size s and energy complexity e of threshold circuits computing MODm, and yields a lower bound e = Ω((logn− logm)/ log log n) on e if s = O(polylog(n)). We actually obtain a general result on the so-called generalized mod function, from which the result on the ordinary mod function MODm immediately follows. Our results on threshold circuits can be extended to a more general class of circuits, called unate circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy-Efficient Threshold Circuits Computing Mod Functions

We prove that the modulus function MODm of n variables can be computed by a threshold circuit C of energy e and size s = O(e(n/m)1/(e−1)) for any integer e ≥ 2, where the energy e is defined to be the maximum number of gates outputting “1” over all inputs to C, and the size s to be the number of gates in C. Our upper bound on the size s almost matches the known lower bound s = Ω(e(n/m)1/e). We ...

متن کامل

Efficient Oblivious Branching Programs for Threshold and Mod Functions

In his survey paper on branching programs, Razborov Raz91] asked the following question: Does every rectiier-switching network computing the majority of n bits have size n 1++(1) ? We answer this question in the negative by constructing a simple oblivious branching program of size O n log 3 n log log n log log log n ! for computing any threshold function. This improves the previously best known...

متن کامل

Lower bounds on threshold and related circuits via communication complexity

Communication-complexity definitions and arguments are used to derive linear (Q(n)) and almost-linear (Q(n/ log n)) lower bounds on the size of circuits implementing certain functions. The techniques utilize only basic features of the gates used and of the functions implemented hence apply to a large class of gates (including unbounded fan-in AND/OR, threshold, symmetric, and generalized symmet...

متن کامل

The Complexity of Computing Symmetric Functions Using Threshold Circuits

Beame, R., E. Brisson and R. Ladner, The complexity of computing symmetric functions using threshold circuits, Theoretical Computer Science 100 (1992) 2533265. This paper considers size-depth tradeoffs for threshold circuits computing symmetric functions. The size measure used is the number of connections or edges in the threshold circuits as opposed to the number of gates in the circuits. The ...

متن کامل

Computing All MOD-Functions Simultaneously

The fundamental symmetric functions are EXk (equal to 1 if the sum of n input bits is exactly k), THk (the sum is at least k), and MODm,r (the sum is congruent to r modulo m). It is well known that all these functions and in fact any symmetric Boolean function have linear circuit size. Simple counting shows that the circuit complexity of computing n symmetric functions is Ω(n2−o(1)) for almost ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009