Restriction endonuclease AgeI is a monomer which dimerizes to cleave DNA

نویسندگان

  • Giedre Tamulaitiene
  • Virginija Jovaisaite
  • Gintautas Tamulaitis
  • Inga Songailiene
  • Elena Manakova
  • Mindaugas Zaremba
  • Saulius Grazulis
  • Shuang-yong Xu
  • Virginijus Siksnys
چکیده

Although all Type II restriction endonucleases catalyze phosphodiester bond hydrolysis within or close to their DNA target sites, they form different oligomeric assemblies ranging from monomers, dimers, tetramers to higher order oligomers to generate a double strand break in DNA. Type IIP restriction endonuclease AgeI recognizes a palindromic sequence 5΄-A/CCGGT-3΄ and cuts it ('/' denotes the cleavage site) producing staggered DNA ends. Here, we present crystal structures of AgeI in apo and DNA-bound forms. The structure of AgeI is similar to the restriction enzymes that share in their target sites a conserved CCGG tetranucleotide and a cleavage pattern. Structure analysis and biochemical data indicate, that AgeI is a monomer in the apo-form both in the crystal and in solution, however, it binds and cleaves the palindromic target site as a dimer. DNA cleavage mechanism of AgeI is novel among Type IIP restriction endonucleases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein assembly and DNA looping by the FokI restriction endonuclease

The FokI restriction endonuclease recognizes an asymmetric DNA sequence and cuts both strands at fixed positions upstream of the site. The sequence is contacted by a single monomer of the protein, but the monomer has only one catalytic centre and forms a dimer to cut both strands. FokI is also known to cleave DNA with two copies of its site more rapidly than DNA with one copy. To discover how F...

متن کامل

Mva1269I: a monomeric type IIS restriction endonuclease from Micrococcus varians with two EcoRI- and FokI-like catalytic domains.

Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis r...

متن کامل

The domain organization of NaeI endonuclease: separation of binding and catalysis.

NaeI is a remarkable type II restriction endonuclease. It must bind two recognition sequences to cleave DNA, forms a covalent protein-DNA intermediate, and is only 1 aa change away from topoisomerase and recombinase activity. The latter activities apparently derive from reactivation of a cryptic DNA ligase active site. Here, we demonstrate that NaeI has two protease-resistant domains, involving...

متن کامل

A Sequence-Specific Nicking Endonuclease from Streptomyces: Purification, Physical and Catalytic Properties

A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. De...

متن کامل

Restriction endonuclease BpuJI specific for the 5′-CCCGT sequence is related to the archaeal Holliday junction resolvase family

Type IIS restriction endonucleases (REases) recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. REase BpuJI recognizes the asymmetric sequence 5'-CCCGT, however it cuts at multiple sites in the vicinity of the target sequence. We show that BpuJI is a dimer, which has two DNA binding surfaces and displays optimal catalytic activit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017