Purkinje Cells in Posterior Cerebellar Vermis Encode Motion in an Inertial Reference Frame
نویسندگان
چکیده
The ability to orient and navigate through the terrestrial environment represents a computational challenge common to all vertebrates. It arises because motion sensors in the inner ear, the otolith organs, and the semicircular canals transduce self-motion in an egocentric reference frame. As a result, vestibular afferent information reaching the brain is inappropriate for coding our own motion and orientation relative to the outside world. Here we show that cerebellar cortical neuron activity in vermal lobules 9 and 10 reflects the critical computations of transforming head-centered vestibular afferent information into earth-referenced self-motion and spatial orientation signals. Unlike vestibular and deep cerebellar nuclei neurons, where a mixture of responses was observed, Purkinje cells represent a homogeneous population that encodes inertial motion. They carry the earth-horizontal component of a spatially transformed and temporally integrated rotation signal from the semicircular canals, which is critical for computing head attitude, thus isolating inertial linear accelerations during navigation.
منابع مشابه
Cerebellar re-encoding of self-generated head movements
Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head...
متن کاملEmbryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells.
The time of origin, site of origin, migratory path and settling pattern of the Purkinje cells of the cerebellar hemispheres, anterior vermis, and posterior vermis were investigated in thymidine radiograms and plastic-embedded materials from rat embryos ranging in age from 15 to 22 days. In the hemispheres there is a rostral-to-caudal cytogenetic gradient: the Purkinje cells of lobulus simplex, ...
متن کاملError detection and representation in the olivo-cerebellar system
Complex spikes generated in a cerebellar Purkinje cell via a climbing fiber have been assumed to encode errors in the performance of neuronal circuits involving Purkinje cells. To reexamine this notion in this review, I analyzed structures of motor control systems involving the cerebellum. A dichotomy was found between the two types of error: sensory and motor errors play roles in the feedforwa...
متن کاملEffects of prenatal exposure to low dose ionizing radiation on the development of the cerebellar cortex in the rat.
The effects of maternal exposure to a single dose of whole body irradiation (0.5 Gy) on gestational days (GD) 17, 18, 19, or 20 on the development of the cerebellar cortex was examined in the offspring of Sprague Dawley rats at 21 and 28 days postnatally. No gross cerebellar anomalies were observed in the irradiated animals. However, compared to control animals, rat irradiated on each of GD-17,...
متن کاملP 17: Electrophysiological Effects of Cannabinoid Receptor Antagonist AM251 on Harmaline Toxicity in Rat’s Cerebellar Vermis Slices
Introduction: The Cannabinoid receptors (CBR) densities are high within the cerebellum. Cannabinoid receptors manipulations have been reported to cause altering the cerebellar functions. harmaline have immune-modulatory effects in several studies. i.e., significant anti-inflammatory effect via the inhibition of prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNF-α). Endocannabino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 54 شماره
صفحات -
تاریخ انتشار 2007