Consequence modeling using the fire dynamics simulator.

نویسندگان

  • Noah L Ryder
  • Jason A Sutula
  • Christopher F Schemel
  • Andrew J Hamer
  • Vincent Van Brunt
چکیده

The use of Computational Fluid Dynamics (CFD) and in particular Large Eddy Simulation (LES) codes to model fires provides an efficient tool for the prediction of large-scale effects that include plume characteristics, combustion product dispersion, and heat effects to adjacent objects. This paper illustrates the strengths of the Fire Dynamics Simulator (FDS), an LES code developed by the National Institute of Standards and Technology (NIST), through several small and large-scale validation runs and process safety applications. The paper presents two fire experiments--a small room fire and a large (15 m diameter) pool fire. The model results are compared to experimental data and demonstrate good agreement between the models and data. The validation work is then extended to demonstrate applicability to process safety concerns by detailing a model of a tank farm fire and a model of the ignition of a gaseous fuel in a confined space. In this simulation, a room was filled with propane, given time to disperse, and was then ignited. The model yields accurate results of the dispersion of the gas throughout the space. This information can be used to determine flammability and explosive limits in a space and can be used in subsequent models to determine the pressure and temperature waves that would result from an explosion. The model dispersion results were compared to an experiment performed by Factory Mutual. Using the above examples, this paper will demonstrate that FDS is ideally suited to build realistic models of process geometries in which large scale explosion and fire failure risks can be evaluated with several distinct advantages over more traditional CFD codes. Namely transient solutions to fire and explosion growth can be produced with less sophisticated hardware (lower cost) than needed for traditional CFD codes (PC type computer verses UNIX workstation) and can be solved for longer time histories (on the order of hundreds of seconds of computed time) with minimal computer resources and length of model run. Additionally results that are produced can be analyzed, viewed, and tabulated during and following a model run within a PC environment. There are some tradeoffs, however, as rapid computations in PC's may require a sacrifice in the grid resolution or in the sub-grid modeling, depending on the size of the geometry modeled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Safety Analysis of Spent Fuel Transportation Cask of Bushehr Nuclear Power Plant through the Passing of Fire Tunnel with ANSYS®10.0

The spent fuel assemblies (FAs) of Bushehr Nuclear Power Plant are planed to be transported by TK-13 casks. Each spent fuel transportation cask holds 12 spent FAs and has a thick steel container to provide shielding. The calculations have been performed for FAs with burn ups of 60 MWd/kg and a 3-years cooling period. The ANSYS®10.0 general finite element analysis package was se...

متن کامل

ارزیابی پیامد حریق مخازن گاز متان در یک پالایشگاه گاز

Introduction: using fossil fuels, some hazards such as explosion and fire are probable. This study was aimed to consequence modeling of fire on Methane storage tanks in a gas refinery using analyzing the risk, and modeling and evaluating the related consequences. Method: Hazard analysis by PHA was used to choosing the worst-case scenario. Then, causes of the scenario were determined by FTA. ...

متن کامل

NISTIR 7431 Visualization, A Tool For Understanding Fire Dynamics

Computational tools have been developed at the National Institute of Standards and Technology (NIST) for modeling fire spread and smoke transport in order that various professionals such as fire protection engineers, fire researchers, fire investigators, fire fighters, AHJ’s (authorities having jurisdiction) etc. may study the dynamics of fire with the ultimate aim of improving fire safety. The...

متن کامل

Generating Fire Dynamics Simulator Geometrical Input Using an Ifc-based Building Information Model

Fire Dynamics Simulator (FDS) is an advanced simulation tool used by fire engineers. The work described in this paper enables geometrical information to be transferred to the simulation tool using the IFC building information model. A parser tool has been developed to extract fire engineering related information from the IFC model and a web-based application has been created to generate FDS inp...

متن کامل

Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models

Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 115 1-3  شماره 

صفحات  -

تاریخ انتشار 2004