Chronic benzodiazepine-induced reduction in GABA(A) receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection.

نویسندگان

  • K Xiang
  • E I Tietz
چکیده

One week oral flurazepam (FZP) administration in rats results in reduced GABA(A) receptor-mediated synaptic transmission in CA1 pyramidal neurons associated with benzodiazepine tolerance in vivo and in vitro. Since voltage-gated calcium channel (VGCC) current density is enhanced twofold during chronic FZP treatment, the role of L-type VGCCs in regulating benzodiazepine-induced changes in CA1 neuron GABA(A) receptor-mediated function was evaluated. Nimodipine (10 mg/kg, i.p.) or vehicle (0.5% Tween 80, 2 ml/kg) was injected 1 day after ending FZP treatment and 24 h prior to hippocampal slice preparation for measurement of mIPSC characteristics and in vitro tolerance to zolpidem. The reduction in GABA(A) receptor-mediated mIPSC amplitude and estimated unitary channel conductance measured 2 days after drug removal was no longer observed following prior nimodipine injection. However, the single nimodipine injection failed to prevent in vitro tolerance to zolpidem's ability to prolong mIPSC decay in FZP-treated neurons, suggesting multiple mechanisms may be involved in regulating GABA(A) receptor-mediated synaptic transmission following chronic FZP administration. As reported previously in recombinant receptors, nimodipine inhibited synaptic GABA(A) receptor currents only at high concentrations (>30 muM), significantly greater than attained in vivo (1 muM) 45 min after a single antagonist injection. Thus, the effects of nimodipine were unlikely to be related to direct effects on GABA(A) receptors. As with nimodipine injection, buffering intracellular free [Ca(2+)] with BAPTA similarly prevented the effects on GABA(A) receptor-mediated synaptic transmission, suggesting intracellular Ca(2+) homeostasis is important to maintain GABA(A) receptor function. The findings further support a role for activation of L-type VGCCs, and perhaps other Ca(2+)-mediated signaling pathways, in the modulation of GABA(A) receptor synaptic function following chronic benzodiazepine administration, independent of modulation of the allosteric interactions between benzodiazepine and GABA binding sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic benzodiazepine administration alters hippocampal CA1 neuron excitability: NMDA receptor function and expression(1).

Rats are tolerant to benzodiazepine (BZ) anticonvulsant actions two days after ending one-week administration of the BZ, flurazepam (FZP). Concurrently, GABA(A) receptor-mediated inhibition is reduced and AMPA receptor-mediated excitation is selectively enhanced in CA1 pyramidal neurons in hippocampal slices. In the present study, the effects of chronic FZP exposure on NMDA receptor (NMDAR) cur...

متن کامل

Selective enhancement of AMPA receptor-mediated function in hippocampal CA1 neurons from chronic benzodiazepine-treated rats.

Two days following one-week administration of the benzodiazepine, flurazepam (FZP), rats exhibit anticonvulsant tolerance in vivo, while reduced GABA(A) receptor-mediated inhibition and enhanced EPSP amplitude are present in CA1 pyramidal neurons in vitro. AMPA receptor (AMPAR)-mediated synaptic transmission in FZP-treated rats was examined using electrophysiological techniques in in vitro hipp...

متن کامل

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Role of bicarbonate ion in mediating decreased synaptic conductance in benzodiazepine tolerant hippocampal CA1 pyramidal neurons.

Chronic flurazepam treatment substantially impairs the function of GABAergic synapses on hippocampal CA1 pyramidal cells. Previous findings included a significant decrease in the synaptic and unitary conductance of CA1 pyramidal neuron GABA(A) receptor channels and the appearance of a GABA(A)-receptor mediated depolarizing potential. To investigate the ionic basis of the decreased conductance, ...

متن کامل

Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability.

Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABA(A) inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 157 1  شماره 

صفحات  -

تاریخ انتشار 2008