Counting words with Laguerre polynomials
نویسندگان
چکیده
We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for k-ary words avoiding any vincular pattern that has only ones. We also give generating functions for k-ary words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as well as the analogous results for compositions. Résumé. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette méthode pour trouver la série génératrice pour les mots k-aires évitant les motifs vinculars consistant uniquement de uns. Nous présentons en suite les séries génératrices pour les mots k-aires évitant de façon cyclique les motifs vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous présentons aussi les résultats analogues pour les compositions.
منابع مشابه
Counting Words with Laguerre Series
We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of weighted sums of Laguerre polynomials with parameter α = −1. We describe how such a series can be computed by finding an appropriate ordinary generating function and applying a certain transformation. We use this technique to find the generating function for the numb...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملSome Relations on Laguerre Matrix Polynomials
The main object of this paper is to give a di erent approach to proof of generating matrix functions for Laguerre matrix polynomials. We also obtain the hypergeometric matrix representations, addition theorem, nite summation formula and an integral representation for Laguerre matrix polynomials. We get the relations between Laguerre, Legendre and Hermite matrix polynomials. We get the generatin...
متن کامل