Signal Enhancement as Minimization of Relevant Information Loss

نویسندگان

  • Bernhard C. Geiger
  • Gernot Kubin
چکیده

We introduce the notion of relevant information loss for the purpose of casting the signal enhancement problem in information-theoretic terms. We show that many algorithms from machine learning can be reformulated using relevant information loss, which allows their application to the aforementioned problem. As a particular example we analyze principle component analysis for dimensionality reduction, discuss its optimality, and show that the relevant information loss can indeed vanish if the relevant information is concentrated on a lower-dimensional subspace of the input space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Minimization of Information Loss through Neural Network Learning

In this article, we explore the concept of minimization of information loss (MIL) as a a target for neural network learning. We relate MIL to supervised and unsupervised learning procedures such as the Bayesian maximum a-posteriori (MAP) discriminator, minimization of distortion measures such as mean squared error (MSE) and cross-entropy (CE), and principal component analysis (PCA). To deal wit...

متن کامل

Minimization of Information Loss through

In this article, we explore the concept of minimization of information loss (MIL) as a a target for neural network learning. We relate MIL to supervised and unsupervised learning procedures such as the Bayesian maximum a-posteriori (MAP) discriminator, minimization of distortion measures such as mean squared error (MSE) and cross-entropy (CE), and principal component analysis (PCA). To deal wit...

متن کامل

Optimal DG Placement for Power Loss Reduction and Improvement Voltage Profile Using Smart Methods

Distributed Generations (DGs) are utilized to supply the active and reactive power in the transmission and distribution systems. These types of power sources have many benefits such as power quality enhancement, voltage deviation reduction, power loss reduction, load shedding reduction, reliability improvement, etc. In order to reach the above benefits, the optimal placement and sizing of DG is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1205.6935  شماره 

صفحات  -

تاریخ انتشار 2012