Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart.
نویسندگان
چکیده
Spectroscopic Ca(2+)-indicators are thought to report values of free intracellular Ca(2+) concentration ([Ca(2+)](i)) that may differ from unperturbed values because they add to the buffering capacity of the tissue. To check this for the heart we have synthesized a new (19)F-labelled NMR Ca(2+) indicator, 1, 2-bis-[2-bis(carboxymethyl)amino-4,5-difluorophenoxy]ethane ('4, 5FBAPTA'), with a low affinity (K(d) 2950 nM). The new indicator and four previously described (19)F-NMR Ca(2+) indicators 1,2-bis-[2-(1 - carboxyethyl)(carboxymethyl)amino - 5 - fluorophenoxy]ethane ('DiMe-5FBAPTA'), 1, 2-bis-[2-(1-carboxyethyl)(carboxymethyl)amino-4-fluorophenoxy]ethane ('DiMe-4FBAPTA'), 1, 2-bis-[2-bis(carboxymethyl)amino-5-fluorophenoxy]ethane ('5FBAPTA') and 1, 2-bis-[2-bis(carboxymethyl)amino-5-fluoro-4-methylphenoxy]ethane ('MFBAPTA'), with dissociation constants for Ca(2+) ranging from 46 to 537 nM, have been used to measure [Ca(2+)](i), over the range from less than 100 nM to more than 3 microM, in Langendorff-perfused ferret hearts (30 degrees C, pH 7.4, paced at 1.0 Hz) by (19)F-NMR spectroscopy. Loading hearts with indicators resulted in buffering of the Ca(2+) transient. The measured end-diastolic and peak-systolic [Ca(2+)](i) were both positively correlated with indicator K(d). The positive correlations between indicator K(d) and the measured end-diastolic and peak-systolic [Ca(2+)](i) were used to estimate the unperturbed end-diastolic and peak-systolic [Ca(2+)](i) by extrapolation to K(d)=0 (diastolic) and to K(d)=infinity (systolic) respectively. The extrapolated values in the intact beating heart were 161 nM for end-diastolic [Ca(2+)](i) and 2650 nM for peak-systolic [Ca(2+)](i), which agree well with values determined from single cells and muscle strips.
منابع مشابه
Intra-sarcoplasmic reticulum free [Ca2+] and buffering in arrhythmogenic failing rabbit heart.
Smaller Ca2+ transients and systolic dysfunction in heart failure (HF) can be largely explained by reduced total sarcoplasmic reticulum (SR) Ca2+ content ([Ca]SRT). However, it is unknown whether low [Ca]SRT is manifest as reduced: (1) intra-SR free [Ca2+] ([Ca2+]SR), (2) intra-SR Ca2+ buffering, or (3) SR volume (as percentage of cell volume). Here we assess these possibilities in a well-chara...
متن کاملCardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca2+ buffering action.
Relaxation abnormalities are prevalent in heart failure and contribute to clinical outcomes. Disruption of Ca2+ homeostasis in heart failure delays relaxation by prolonging the intracellular Ca2+ transient. We sought to speed cardiac relaxation in vivo by cardiac-directed transgene expression of parvalbumin (Parv), a cytosolic Ca2+ buffer normally expressed in fast-twitch skeletal muscle. A key...
متن کاملDirect measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart.
In studies of ischemia and reperfusion, a major experimental problem has been the inability to measure intracellular ionized calcium ([Ca2+]i) in the intact heart. We have developed a new approach in which the bioluminescent calcium indicator aequorin is used to measure [Ca2+]i in the isolated, coronary-perfused ferret heart. Aequorin is loaded into subepicardial myocytes of the left ventricle,...
متن کاملP30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain
Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...
متن کاملIncreased Ca buffering underpins remodelling of Ca2+ handling in old sheep atrial myocytes
KEY POINTS Ageing is associated with an increased risk of cardiovascular disease and arrhythmias, with the most common arrhythmia being found in the atria of the heart. Little is known about how the normal atria of the heart remodel with age and thus why dysfunction might occur. We report alterations to the atrial systolic Ca2+ transient that have implications for the function of the atrial in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 346 Pt 2 شماره
صفحات -
تاریخ انتشار 2000