Symmetric Hamilton cycle decompositions of complete multigraphs

نویسندگان

  • V. Chitra
  • Appu Muthusamy
چکیده

Let n ≥ 3 and λ ≥ 1 be integers. Let λKn denote the complete multigraph with edge-multiplicity λ. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of λK2m for all even λ ≥ 2 and m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decomposition of λK2m − F for all odd λ ≥ 3 and m ≥ 2. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of λKn (respectively, λKn − F , where F is a 1-factor of λKn) which exist if and only if λ(n − 1) is even (respectively, λ(n − 1) is odd), except the non-existence cases n ≡ 0 or 6 (mod 8) when λ = 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Hamilton Cycle Decompositions of Complete Graphs Minus a 1-Factor

Let n ≥ 2 be an integer. The complete graph Kn with a 1-factor F removed has a decomposition into Hamilton cycles if and only if n is even. We show that Kn − F has a decomposition into Hamilton cycles which are symmetric with respect to the 1-factor F if and only if n ≡ 2, 4 mod 8. We also show that the complete bipartite graph Kn,n has a symmetric Hamilton cycle decomposition if and only if n ...

متن کامل

Hamilton cycle decompositions of k-uniform k-partite hypergraphs

Let m ≥ 2 and k ≥ 2 be integers. We show that K k×m has a decomposition into Hamilton cycles of Kierstead-Katona type if k | m. We also show that K (3) 3×m − T has a decomposition into Hamilton cycles where T is a 1-factor if and only if 3 m and m = 4. We introduce a notion of symmetry and comment on the existence of symmetric Hamilton cycle decompositions of K (k) k×m.

متن کامل

Decompositions of multigraphs into parts with two edges

Given a family F of multigraphs without isolated vertices, a multigraph M is called F-decomposable if M is an edge disjoint union of multigraphs each of which is isomorphic to a member of F . We present necessary and sufficient conditions for the existence of such decompositions if F comprises two multigraphs from the set consisting of a 2-cycle, a 2-matching and a path with two edges.

متن کامل

The complete multigraphs and their decompositions into open trails

Balister [Combin. Probab. Comput. 12 (2003), 1–15] gave a necessary and sufficient condition for a complete multigraph Kn to be arbitrarily decomposable into closed trails of prescribed lengths. In this article we solve the corresponding problem showing that the multigraphs Kn are arbitrarily decomposable into open trails.

متن کامل

Decompositions Of λKv Into Multigraphs With Four Vertices And Five Edges

This paper is motivated by a survey on the existence of G-designs by Adams, Bryant and Buchanan, where they gave the spectrum of the decomposition of complete graphs into graphs with small numbers of vertices. We give difference family-type constructions to decompose λ copies, where λ ≥ 2, of the complete graph K v into several multigraphs on four vertices and five edges including so called " 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2013