A recurrent neural network for solving Sylvester equation with time-varying coefficients
نویسندگان
چکیده
Presents a recurrent neural network for solving the Sylvester equation with time-varying coefficient matrices. The recurrent neural network with implicit dynamics is deliberately developed in the way that its trajectory is guaranteed to converge exponentially to the time-varying solution of a given Sylvester equation. Theoretical results of convergence and sensitivity analysis are presented to show the desirable properties of the recurrent neural network. Simulation results of time-varying matrix inversion and online nonlinear output regulation via pole assignment for the ball and beam system and the inverted pendulum on a cart system are also included to demonstrate the effectiveness and performance of the proposed neural network.
منابع مشابه
MATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Online Solution of Linear Time-Varying Matrix Equation AXB-C=0
Different from gradient neural networks (GNN), a special kind of recurrent neural networks has been proposed recently by Zhang et al for solving online linear matrix equations with time-varying coefficients. Such recurrent neural networks, designed based on a matrixvalued error-function, could achieve global exponential convergence when solving online time-varying problems in comparison with gr...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملMATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Time-Varying Lyapunov Equation Solving
This paper presents a new kind of recurrent neural network proposed by Zhang et al. for solving online Lyapunov equation with time-varying coefficient matrices. Global exponential convergence could be achieved by such a recurrent neural network when solving the timevarying problems in comparison with gradient neural networks (GNN). MATLAB simulation of both neural networks for the real-time sol...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2002