Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function
نویسندگان
چکیده
In this paper we show how to construct the Evans function for traveling wave solutions of integral neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave stability and bifurcation as a function of system parameters, including the speed and strength of synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction and stability analysis of front solutions to a scalar neural field model and a limiting case is shown to recover recent results of L. Zhang [On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential and Integral Equations, 16, (2003), pp.513-536.]. Traveling fronts and pulses are considered in more general models possessing either a linear or piecewise constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front bifurcation and consider parameter regimes that support two stable traveling fronts of different speed. Such fronts may be connected and depending on their relative speed the resulting region of activity can widen or contract. The conditions for the contracting case to lead to a pulse solution are established. The stability of pulses is obtained for a variety of examples, in each case confirming a previously conjectured stability result. Finally we show how this theory may be used to describe the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical simulations show that such an instability can lead to the shedding of a pair of traveling pulses.
منابع مشابه
Threshold of front propagation in neural fields: An interface dynamics approach
Neural field equations model population dynamics of large-scale networks of neurons. Wave propagation in neural fields is often studied by constructing traveling wave solutions in the wave coordinate frame. Nonequilibrium dynamics are more challenging to study, due to the nonlinearity and nonlocality of neural fields, whose interactions are described by the kernel of an integral term. Here, we ...
متن کاملWaves and bumps in neuronal networks with axo-dendritic synaptic interactions
We consider a firing rate model of a neuronal network continuum that incorporates axo-dendritic synaptic processing and the finite conduction velocities of action potentials. The model equation is an integral one defined on a spatially extended domain. Apart from a spatial integral mixing the network connectivity function with space-dependent delays, arising from non-instantaneous axonal commun...
متن کاملBumps and rings in a two-dimensional neural field: splitting and rotational instabilities
In this paper, we consider instabilities of localized solutions in planar neural field firing rate models of Wilson–Cowan or Amari type. Importantly we show that angular perturbations can destabilize spatially localized solutions. For a scalar model with Heaviside firing rate function, we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict th...
متن کاملNeural field modelling
The tools of dynamical systems theory are having an increasing impact on our understanding of patterns of neural activity. In these five lectures I will describe how to build tractable tissue level models that maintain a strong link with biophysical reality. These models typically take the form of nonlinear integro-differential equations. Their non-local nature has led to the development of a s...
متن کاملAn integral formula for Heaviside neural networks
A connection is investigated between integral formulas and neural networks based on the Heaviside function. The integral formula developed by Kůrková, Kainen and Kreinovich is derived in a new way for odd dimensions and extended to even dimensions. In particular, it is shown that well-behaved functions of d variables can be represented by integral combinations of Heavisides with weights dependi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 3 شماره
صفحات -
تاریخ انتشار 2004