The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps

نویسندگان

  • Mark J. Lee
  • Hong Liu
  • Bridget M. Barker
  • Brendan D. Snarr
  • Fabrice N. Gravelat
  • Qusai Al Abdallah
  • Christina Gavino
  • Shane R. Baistrocchi
  • Hanna Ostapska
  • Tianli Xiao
  • Benjamin Ralph
  • Norma V. Solis
  • Mélanie Lehoux
  • Stefanie D. Baptista
  • Arsa Thammahong
  • Robert P. Cerone
  • Susan G. W. Kaminskyj
  • Marie-Christine Guiot
  • Jean-Paul Latgé
  • Thierry Fontaine
  • Donald C. Vinh
  • Scott G. Filler
  • Donald C. Sheppard
  • Robin Charles May
چکیده

Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation

UNLABELLED The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identi...

متن کامل

Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System

Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of...

متن کامل

Galactosaminogalactan of Aspergillus fumigatus, a bioactive fungal polymer.

Galactosaminogalactan (GAG) is an extracellular polysaccharide produced by the mycelium of the opportunistic human fungal pathogen Aspergillus fumigatus GAG is the first polysaccharide described as a virulence factor in medical mycology. This review presents our current knowledge of the structural organization and biosynthesis of this polymer. The function of this molecule as an adhesin that al...

متن کامل

Role for streptococcal collagen-like protein 1 in M1T1 group A Streptococcus resistance to neutrophil extracellular traps.

Streptococcal collagen-like protein 1 (Scl-1) is one of the most highly expressed proteins in the invasive M1T1 serotype group A Streptococcus (GAS), a globally disseminated clone associated with higher risk of severe invasive infections. Previous studies using recombinant Scl-1 protein suggested a role in cell attachment and binding and inhibition of serum proteins. Here, we studied the contri...

متن کامل

Role of MicroRNAs in BCG Therapy by the Induction of Neutrophil Extracellular Traps in Bladder Cancer

The treatment of bladder cancer is usually performed by Bacillus Calmette-Guerin (BCG) instillation. BCG therapy is a common therapeutic method with fewer side effects compared with chemotherapy, radiotherapy, etc. BCG can also inhibit the progression and recurrence of bladder cancer by inducing apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015