Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis.

نویسندگان

  • Joan Selverstone Valentine
  • Peter A Doucette
  • Soshanna Zittin Potter
چکیده

Copper-zinc superoxide dismutase (CuZnSOD, SOD1 protein) is an abundant copper- and zinc-containing protein that is present in the cytosol, nucleus, peroxisomes, and mitochondrial intermembrane space of human cells. Its primary function is to act as an antioxidant enzyme, lowering the steady-state concentration of superoxide, but when mutated, it can also cause disease. Over 100 different mutations have been identified in the sod1 genes of patients diagnosed with the familial form of amyotrophic lateral sclerosis (fALS). These mutations result in a highly diverse group of mutant proteins, some of them very similar to and others enormously different from wild-type SOD1. Despite their differences in properties, each member of this diverse set of mutant proteins causes the same clinical disease, presenting a challenge in formulating hypotheses as to what causes SOD1-associated fALS. In this review, we draw together and summarize information from many laboratories about the characteristics of the individual mutant SOD1 proteins in vivo and in vitro in the hope that it will aid investigators in their search for the cause(s) of SOD1-associated fALS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in copper-zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein.

A series of mutant human and yeast copper-zinc superoxide dismutases has been prepared, with mutations corresponding to those found in familial amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease). These proteins have been characterized with respect to their metal-binding characteristics and their redox reactivities. Replacement of Zn2+ ion in the zinc sites of several of the...

متن کامل

The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase.

Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal bi...

متن کامل

Lipid-associated aggregate formation of superoxide dismutase-1 is initiated by membrane-targeting loops.

Copper-Zinc superoxide dismutase 1 (SOD1) is a homodimeric enzyme that protects cells from oxidative damage. Hereditary and sporadic amyotrophic lateral sclerosis may be linked to SOD1 when the enzyme is destabilized through mutation or environmental stress. The cytotoxicity of demetallated or apo-SOD1 aggregates may be due to their ability to cause defects within cell membranes by co-aggregati...

متن کامل

Accelerated s-nitrosothiol breakdown by amyotrophic lateral sclerosis mutant copper,zinc-superoxide dismutase.

Mutations in copper,zinc-superoxide dismutase (SOD) have been implicated in familial amyotrophic lateral sclerosis (FALS). We have investigated the breakdown of S-nitrosothiols by wild-type (WT) SOD and two common FALS mutants, alanine-4 valine (A4V) SOD and glycine-37 arginine (G37R) SOD. In the presence of glutathione, A4V SOD and G37R SOD catalyzed S-nitrosoglutathione breakdown three times ...

متن کامل

Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis.

The presence of the copper ion at the active site of human wild type copper-zinc superoxide dismutase (CuZnSOD) is essential to its ability to catalyze the disproportionation of superoxide into dioxygen and hydrogen peroxide. Wild type CuZnSOD and several of the mutants associated with familial amyotrophic lateral sclerosis (FALS) (Ala(4) --> Val, Gly(93) --> Ala, and Leu(38) --> Val) were expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of biochemistry

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2005