Organotypic Spinal Cord Slice Culture to Study Neural Stem/Progenitor Cell Microenvironment in the Injured Spinal Cord
نویسندگان
چکیده
The molecular microenvironment of the injured spinal cord does not support survival and differentiation of either grafted or endogenous NSCs, restricting the effectiveness of the NSC-based cell replacement strategy. Studying the biology of NSCs in in vivo usually requires a considerable amount of time and cost, and the complexity of the in vivo system makes it difficult to identify individual environmental factors. The present study sought to establish the organotypic spinal cord slice culture that closely mimics the in vivo environment. The cultured spinal cord slices preserved the cytoarchitecture consisting of neurons in the gray matter and interspersed glial cells. The majority of focally applied exogenous NSCs survived up to 4 weeks. Pre-exposure of the cultured slices to a hypoxic chamber markedly reduced the survival of seeded NSCs on the slices. Differentiation into mature neurons was severely limited in this co-culture system. Endogenous neural progenitor cells were marked by BrdU incorporation, and applying an inflammatory cytokine IL-1β significantly increased the extent of endogenous neural progenitors with the oligodendrocytic lineage. The present study shows that the organotypic spinal cord slice culture can be properly utilized to study molecular factors from the post-injury microenvironment affecting NSCs in the injured spinal cord.
منابع مشابه
Evaluation of Epidermal Neural Crest Stem Cells in Organotypic Spinal Cord Slice Culture Platform.
Among various strategies employed for spinal cord injury, stem cell therapy is a potential treatment. So far, a variety of stem cells have been evaluated in animal models and humans with spinal cord injury, and epidermal neural crest stem cells represent one of the attractive types in this area. Although these multipotent stem cells have been assessed in several spinal cord injury models by ind...
متن کاملRepair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملAdult spinal cord progenitor cells are repelled by netrin-1 in the embryonic and injured adult spinal cord.
Adult neural progenitor cells (aNPCs) exhibit limited migration in vivo with the exception of the rostral migratory stream and injury-induced movement. Surprisingly little is known regarding those signals regulating attraction or inhibition of the aNPC. These studies demonstrate that aNPCs respond principally to a repulsive cue expressed at the embryonic floor plate (FP) and also the injured ad...
متن کاملEffects of Biodegradable Polymers on the Rat's Damaged Spinal Cord Neural Membranes
The overall goal of this study was to identify the appropriate biomaterials able to facilitate the regeneration in rat's injured adult spinal cord. Acute damage to axons is manifested as a breach in their membranes, ionexchange distortion across the compromised region, local depolarization and even conduction block. It would be of particular importance to interrupt the progress of events h...
متن کاملThe Organotypic Longitudinal Spinal Cord Slice Culture for Stem Cell Study
The objective of this paper is to describe in detail the method of organotypic longitudinal spinal cord slice culture and the scientific basis for its potential utility. The technique is based on the interface method, which was described previously and thereafter was modified in our laboratory. The most important advantage of the presented model is the preservation of the intrinsic spinal cord ...
متن کامل