On endo-Cayley digraphs: The hamiltonian property

نویسندگان

  • Montserrat Maureso
  • Josep M. Brunat
چکیده

Given a finite abelian group A, a subset ⊆ A and an endomorphism of A, the endo-Cayley digraph GA( , ) is defined by taking A as the vertex set and making every vertex x adjacent to the vertices (x)+ a with a ∈ . When A is cyclic and the set is of the form = {e, e + h, . . . , e + (d − 1)h}, the digraph G is called a consecutive digraph. In this paper we study the hamiltonicity of endo-Cayley digraphs by using three approaches based on: line digraph, merging cycles and a generalization of the factor group lemma. The results are applied to consecutive digraphs. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cayley graph associated to a semihypergroup

The purpose of this paper is the study of Cayley graph associated to a semihypergroup(or hypergroup). In this regards first  we associate a Cayley graph to every semihypergroup and then we study theproperties of this graph, such as  Hamiltonian cycles in this  graph.  Also, by some of examples we will illustrate  the properties and behavior of  these Cayley  graphs, in particulars we show that ...

متن کامل

2-generated Cayley digraphs on nilpotent groups have hamiltonian paths

Suppose G is a nilpotent, finite group. We show that if {a, b} is any 2-element generating set of G, then the corresponding Cayley digraph −−→ Cay(G; a, b) has a hamiltonian path. This implies that all of the connected Cayley graphs of valence ≤ 4 on G have hamiltonian paths.

متن کامل

On Hamilton Circuits in Cayley Digraphs over Generalized Dihedral Groups

In this paper we prove that given a generalized dihedral group DH and a generating subset S, if S∩H 6= ∅ then the Cayley digraph → Cay(DH , S) is Hamiltonian. The proof we provide is via a recursive algorithm that produces a Hamilton circuit in the digraph.

متن کامل

The Manhattan product of digraphs

We study the main properties of a new product of bipartite digraphs which we call Manhattan product. This product allows us to understand the subjacent product in the Manhattan street networks and can be used to built other networks with similar good properties. It is shown that if all the factors of such a product are (directed) cycles, then the digraph obtained is a Manhattan street network, ...

متن کامل

A new operation on digraphs : the Manhattan product

We give a formal definition of a new product of bipartite digraphs, the Manhattan product, and we study some of its main properties. It is shown that if all the factors of the above product are (directed) cycles, then the digraph obtained is a Manhattan street network. To this respect, it is proved that many properties of these networks, such as high symmetries and the presence of Hamiltonian c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 299  شماره 

صفحات  -

تاریخ انتشار 2005