On endo-Cayley digraphs: The hamiltonian property
نویسندگان
چکیده
Given a finite abelian group A, a subset ⊆ A and an endomorphism of A, the endo-Cayley digraph GA( , ) is defined by taking A as the vertex set and making every vertex x adjacent to the vertices (x)+ a with a ∈ . When A is cyclic and the set is of the form = {e, e + h, . . . , e + (d − 1)h}, the digraph G is called a consecutive digraph. In this paper we study the hamiltonicity of endo-Cayley digraphs by using three approaches based on: line digraph, merging cycles and a generalization of the factor group lemma. The results are applied to consecutive digraphs. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Cayley graph associated to a semihypergroup
The purpose of this paper is the study of Cayley graph associated to a semihypergroup(or hypergroup). In this regards first we associate a Cayley graph to every semihypergroup and then we study theproperties of this graph, such as Hamiltonian cycles in this graph. Also, by some of examples we will illustrate the properties and behavior of these Cayley graphs, in particulars we show that ...
متن کامل2-generated Cayley digraphs on nilpotent groups have hamiltonian paths
Suppose G is a nilpotent, finite group. We show that if {a, b} is any 2-element generating set of G, then the corresponding Cayley digraph −−→ Cay(G; a, b) has a hamiltonian path. This implies that all of the connected Cayley graphs of valence ≤ 4 on G have hamiltonian paths.
متن کاملOn Hamilton Circuits in Cayley Digraphs over Generalized Dihedral Groups
In this paper we prove that given a generalized dihedral group DH and a generating subset S, if S∩H 6= ∅ then the Cayley digraph → Cay(DH , S) is Hamiltonian. The proof we provide is via a recursive algorithm that produces a Hamilton circuit in the digraph.
متن کاملThe Manhattan product of digraphs
We study the main properties of a new product of bipartite digraphs which we call Manhattan product. This product allows us to understand the subjacent product in the Manhattan street networks and can be used to built other networks with similar good properties. It is shown that if all the factors of such a product are (directed) cycles, then the digraph obtained is a Manhattan street network, ...
متن کاملA new operation on digraphs : the Manhattan product
We give a formal definition of a new product of bipartite digraphs, the Manhattan product, and we study some of its main properties. It is shown that if all the factors of the above product are (directed) cycles, then the digraph obtained is a Manhattan street network. To this respect, it is proved that many properties of these networks, such as high symmetries and the presence of Hamiltonian c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 299 شماره
صفحات -
تاریخ انتشار 2005