Therapeutic Potential of Kainate Receptors

نویسنده

  • Carlos Matute
چکیده

Glutamate receptors are key mediators of brain communication. Among ionotropic glutamate receptors, kainate receptors (KARs) have been least explored and their relevance to pathophysiology is relatively obscure. This is in part due to the relatively low abundance of KARs, the regulatory function in network activity they play, the lack of specific agonists and antagonists for this receptor subtype, as well as to the absence of striking phenotypes in mice deficient in KAR subunits. Nonetheless, it is now well established that KARs are located presynaptically whereby they regulate glutamate and GABA release, and thus, excitability and participate in short-term plasticity. In turn, KARs are also located postsynaptically and their activation contributes to synaptic integration. The development of specific novel ligands is helping to further investigate the contribution of KARs to health and disease. In this review, I summarize current knowledge about KAR physiology and pharmacology, and discuss their involvement in cell death and disease. In addition, I recapitulate the available data about the use of KAR antagonists and receptor subunit deficient mice in experimental paradigms of brain diseases, as well as the main findings about KAR roles in human CNS disorders. In sum, subunit specific antagonists have therapeutic potential in neurodegenerative and psychiatric diseases as well as in epilepsy and pain. Knowledge about the genetics of KARs will also help to understand the pathophysiology of those and other illnesses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines.

NMDA and non-NMDA (AMPA/kainate) antagonists have potential in the treatment of a diverse group of neurological disorders associated with excessive activation of excitatory amino acid receptors. Here Michael Rogawski reviews recent progress in the development of therapeutically useful NMDA receptor channel blockers and a new class of selective AMPA/kainate receptor antagonists, the 2,3-benzodia...

متن کامل

Kainate receptor signaling in pain pathways.

Receptors and channels that underlie nociceptive signaling constitute potential sites of intervention for treatment of chronic pain states. The kainate receptor family of glutamate-gated ion channels represents one such candidate set of molecules. They have a prominent role in modulation of excitatory signaling between sensory and spinal cord neurons. Kainate receptors are also expressed throug...

متن کامل

Mol081398 307..315

Receptors and channels that underlie nociceptive signaling constitute potential sites of intervention for treatment of chronic pain states. The kainate receptor family of glutamate-gated ion channels represents one such candidate set of molecules. They have a prominent role in modulation of excitatory signaling between sensory and spinal cord neurons. Kainate receptors are also expressed throug...

متن کامل

Altered expression of orexin 1 and endocannabinoid 1 receptors of the hippocampus in three pentylenetetrazol, pilocarpine and kainate seizure models

Introduction: Seizure is synchronous and abnormal brain neuronal activity that leads to activation of different receptors capable of enhancing or suppressing seizure activity such as orexin receptor 1 (OXR1) and/or endocannabinoid receptor 1(CBR1). The time of activation for the receptors may influence seizure control. Therefore, this study aimed to investigate the latency for and the change of...

متن کامل

Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis.

Kainate receptors containing the GluK1 subunit have an impact on excitatory and inhibitory neurotransmission in brain regions, such as the amygdala and hippocampus, which are relevant to seizures and epilepsy. Here we used 2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a potent and selective agonist of kainate receptors that include the GluK1 subunit, in conjunction with...

متن کامل

(2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors.

Glutamic acid activates ionotropic glutamate receptors that mediate excitatory transmission in the central nervous system. The introduction of a methyl group at position 4 of glutamic acid imparts selectivity for kainate receptors, relative to other (N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) ionotropic glutamate receptors. Among the stereoisomers of 4-me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011