Estimation of semi-parametric additive coefficient model

نویسنده

  • Lan Xue
چکیده

In the multivariate regression setting, we propose a flexible varying coefficient model in which the regression coefficients of some predictors are additive functions of other predictors. Marginal integration estimators of the coefficients are developed and their asymptotic properties investigated. Under -mixing, it is found that the estimators of the parameters in the regression coefficients have rate of convergence 1/ √ n, and the nonparametric additive components are estimated at the same rate of convergence as in univariate smoothing.A data-driven bandwidth selectionmethod is developed based on asymptotic considerations. Its effectiveness is confirmed in a Monte-Carlo study. The procedure is applied to the real German GNP and Wolf’s Sunspot data, where the semi-parametric additive coefficient model demonstrates superior performance in terms of out-of-sample forecasts. © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of a groupwise additive multiple-index model and its applications

In this paper, we propose a simple linear least squares framework to deal with estimation and selection for a groupwise additive multiple-index model, of which the partially linear single-index model is a special case, and in which each component function has a single-index structure. We show that, somewhat unexpectedly, all index vectors can be recovered through a single least squares coeffici...

متن کامل

Estimation of GDP in Turkey by nonparametric regression models

Present study is about using of nonparametric models for GDP (Gross Domestic Product) per capita prediction in Turkey. It has been considered two alternative situations due to seasonal effects. In the first case, it is discussed a semi-parametric model where parametric component is dummy variable for the seasonality. In the second case, it is considered the seasonal component to be a smooth fun...

متن کامل

Linear Dependent Dimensionality Reduction

We formulate linear dimensionality reduction as a semi-parametric estimation problem, enabling us to study its asymptotic behavior. We generalize the problem beyond additive Gaussian noise to (unknown) nonGaussian additive noise, and to unbiased non-additive models.

متن کامل

Semi-parametric estimation of the strategic goods (OPEC oil price)

In the global economy, crude oil is among the most important strategic goods that affects the performance of local and international markets. Prediction of the oil price has always been an important challenging topic in the global economy and producers and consumers have constantly been trying to improve their roll in the oil price changes and for many years OPEC has been one of the key players...

متن کامل

spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R

The R package spikeSlabGAM implements Bayesian variable selection, model choice, and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates and their interactions, (2) to determine whether linear or more flexible functional forms are required to model the effects of the respe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006