Range-Space Variants and Inexact Matrix-Vector Products in Krylov Solvers for Linear Systems Arising from Inverse Problems
نویسندگان
چکیده
The object of this paper is to introduce range-space variants of standard Krylov iterative solvers for unsymmetric and symmetric linear systems, and to discuss how inexact matrix-vector products may be used in this context. The new range-space variants are characterized by possibly much lower storage and computational costs than their full-space counterparts, which is crucial in data assimilation applications and other inverse problems. However, this gain is achieved without sacrifying the inherent monotonicity properties of the original algorithms, which are of paramount importance in data assimilation applications. The use of inexact matrix-vector products is shown to further reduce computational cost in a controlled manner. Formal error bounds are derived on the size of the residuals obtained under two different accuracy models, and it is shown why a model controlling forward error on the product result is often preferable to one controlling backward error on the operator. Simple numerical examples finally illustrate the developed concepts and methods.
منابع مشابه
New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملRegularized HSS Iteration Method for Saddle - Point Linear Systems
We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspace methods. We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding precondi...
متن کاملRegularized HSS iteration methods for saddle-point linear systems
We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspacemethods.We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding preconditi...
متن کاملOn the parallel solution of large industrial wave propagation problems
The use of Fast Multipole Methods (FMM) combined with embedded Krylov solvers preconditioned by a sparse approximate inverse is investigated for the solution of large linear systems arising in industrial acoustic and electromagnetic simulations. We use a boundary elements integral equation method to solve the Helmholtz and the Maxwell equations in the frequency domain. The resulting linear syst...
متن کاملInexact GMRES for singular linear systems
Inexact Krylov subspace methods have been shown to be practical alternatives for the solution of certain linear systems of equations. In this paper, the solution of singular systems with inexact matrix-vector products is explored. Criteria are developed to prescribe how inexact the matrix-vector products can be, so that the computed residual remains close to the true residual, thus making the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 32 شماره
صفحات -
تاریخ انتشار 2011