Enumeration of bilaterally symmetric 3-noncrossing partitions

نویسندگان

  • Guoce Xin
  • Terence Y. J. Zhang
چکیده

Schützenberger’s theorem for the ordinary RSK correspondence naturally extends to Chen et. al’s correspondence for matchings and partitions. Thus the counting of bilaterally symmetric k-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for 3-noncrossing partitions, we use a different technique to develop a MAPLE package for 2-dimensional vacillating lattice walk enumeration problems. As an application, we find an interesting relation between two special bilaterally symmetric partitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON 2-REGULAR, k-NONCROSSING PARTITIONS

In this paper we prove a bijection between 2-regular, k-noncrossing partitions and k-noncrossing enhanced partitions. Via this bijection we enumerate 2-regular, 3-noncrossing partitions using an enumeration result [1] for enhanced 3-noncrossing partitions. In addition we derive the asymptotics for the numbers of 2-regular, 3-noncrossing partitions using the BirkhoffTrijtzinky analytic theory of...

متن کامل

Crossings and Nestings in Colored Set Partitions

Chen, Deng, Du, Stanley, and Yan introduced the notion of k-crossings and k-nestings for set partitions, and proved that the sizes of the largest k-crossings and k-nestings in the partitions of an n-set possess a symmetric joint distribution. This work considers a generalization of these results to set partitions whose arcs are labeled by an r-element set (which we call r-colored set partitions...

متن کامل

Reduction of m-regular noncrossing partitions

In this paper, we present a reduction algorithm which transforms m-regular partitions of [n] = {1, 2, . . . , n} to (m−1)-regular partitions of [n − 1]. We show that this algorithm preserves the noncrossing property. This yields a simple explanation of an identity due to Simion-Ullman and Klazar in connection with enumeration problems on noncrossing partitions and RNA secondary structures. For ...

متن کامل

Noncrossing partitions with fixed points

The noncrossing partitions with each of their blocks containing a given element are introduced and studied. The enumeration of these partitions is described through a polynomial of several variables which is proved to satisfy a recursive formula. It is shown that each variable increased by one is a factor of this polynomial.

متن کامل

Refined Enumeration of Noncrossing Chains and Hook Formulas

In the combinatorics of finite finite Coxeter groups, there is a simple formula giving the number of maximal chains of noncrossing partitions. It is a reinterpretation of a result by Deligne which is due to Chapoton, and the goal of this article is to refine the formula. First, we prove a one-parameter generalization, by the considering enumeration of noncrossing chains where we put a weight on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009