Building Robust Stochastic Configuration Networks with Kernel Density Estimation
نویسندگان
چکیده
Neural networks have been widely used as predictive models to fit data distribution, and they could be implemented through learning a collection of samples. In many applications, however, the given dataset may contain noisy samples or outliers which may result in a poor learner model in terms of generalization. This paper contributes to a development of robust stochastic configuration networks (RSCNs) for resolving uncertain data regression problems. RSCNs are built on original stochastic configuration networks with weighted least squaresmethod for evaluating the output weights, and the input weights and biases are incrementally and randomly generated by satisfying with a set of inequality constrains. The kernel density estimation (KDE) method is employed to set the penalty weights for each training samples, so that some negative impacts, caused by noisy data or outliers, on the resulting learner model can be reduced. The alternating optimization technique is applied for updating a RSCN model with improved penalty weights computed from the kernel density estimation function. Performance evaluation is carried out by a function approximation, four benchmark datasets and a case study on engineering application. Comparisons to other robust randomised neural modelling techniques, including the probabilistic robust learning algorithm for neural networks with random weights and improved RVFL networks, indicate that the proposed RSCNs with KDE perform favourably and demonstrate good potential for real-world applications.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملFrom Empirical Observations to Tree Models for Stochastic Optimization: Convergence Properties
In multistage stochastic optimization we use stylized processes to model the relevant stochastic data processes. The basis for building these models is empirical observations. It is well known that the determining distance concept for multistage stochastic optimization problems is the nested distance and not the distance in distribution. In this paper we investigate the question of how to gener...
متن کاملSelf-organizing mixture networks for probability density estimation
A self-organizing mixture network (SOMN) is derived for learning arbitrary density functions. The network minimizes the Kullback-Leibler information metric by means of stochastic approximation methods. The density functions are modeled as mixtures of parametric distributions. A mixture needs not to be homogenous, i.e., it can have different density profiles. The first layer of the network is si...
متن کاملA Data-Driven Multistage Adaptive Robust Optimization Framework for Planning and Scheduling under Uncertainty
A novel data-driven approach for optimization under uncertainty based on multistage adaptive robust optimization (ARO) and nonparametric kernel density M-estimation is proposed. Different from conventional robust optimization methods, the proposed framework incorporates distributional information to avoid over-conservatism. Robust kernel density estimation with Hampel loss function is employed ...
متن کاملIntegration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 412 شماره
صفحات -
تاریخ انتشار 2017