Intensity based image registration by minimizing exponential function weighted residual complexity

نویسندگان

  • Juan Zhang
  • Zhen-Tai Lu
  • Vadim Pigrish
  • Qian-Jin Feng
  • Wu-Fan Chen
چکیده

In this paper, we propose a novel intensity-based similarity measure for medical image registration. Traditional intensity-based methods are sensitive to intensity distortions, contrast agent and noise. Although residual complexity can solve this problem in certain situations, relative modification of the parameter can generate dramatically different results. By introducing a specifically designed exponential weighting function to the residual term in residual complexity, the proposed similarity measure performed well due to automatically weighting the residual image between the reference image and the warped floating image. We utilized local variance of the reference image to model the exponential weighting function. The proposed technique was applied to brain magnetic resonance images, dynamic contrast enhanced magnetic resonance images (DCE-MRI) of breasts and contrast enhanced 3D CT liver images. The experimental results clearly indicated that the proposed approach has achieved more accurate and robust performance than mutual information, residual complexity and Jensen-Tsallis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary-constrained inverse consistent image registration and its applications

This dissertation presents a new inverse consistent image registration (ICIR) method called boundary-constrained inverse consistent image registration (BICIR). ICIR algorithms jointly estimate the forward and reverse transformations between two images while minimizing the inverse consistency error (ICE). The ICE at a point is defined as the distance between the starting and ending location of a...

متن کامل

Weighted Sums and Residual Empirical Processes for Time-varying Processes

Function indexed weighted sums and sequential residual empirical processes based on time-varying AR-processes are studied. It is shown that under appropriate assumptions non-parametric estimation of the parameter functions does not influence the asymptotic distribution of the residual empirical process. An exponential inequality for weighted sums of time-varying processes provides the basis for...

متن کامل

EEG to MRI Registration Based on Global and Local Similarities of MRI Intensity Distributions

In this paper, a novel method for EEG to MRI registration is proposed. Initial registration is achieved by extracting and matching symmetry planes of MRI and EEG data, followed by iterative registration based on minimizing a cost function. Comparison of the intensity distributions of the whole MR image and MRI voxels around a head surface point yields global similarities, while the comparison o...

متن کامل

Anatomical Landmark Based Registration of Contrast Enhanced T1-Weighted MR Images

In many problems involving multiple image analysis, an image registration step is required. One such problem appears in brain tumor imaging, where baseline and follow-up image volumes from a tumor patient are often to-be compared. Nature of the registration for a change detection problem in brain tumor growth analysis is usually rigid or affine. Contrast enhanced T1-weighted MR images are widel...

متن کامل

Image Registration Using Markov Random Coefficient Fields

Image Registration is central to different applications such as medical analysis, biomedical systems, image guidance, etc. In this paper we propose a new algorithm for multi-modal image registration. A Bayesian formulation is presented in which a likelihood term is defined using an observation model based on linear intensity transformation functions. The coefficients of these transformations ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 43 10  شماره 

صفحات  -

تاریخ انتشار 2013