Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1.

نویسندگان

  • J Lloret
  • B B Wulff
  • J M Rubio
  • J A Downie
  • I Bonilla
  • R Rivilla
چکیده

The halotolerant strain Rhizobium meliloti EFB1 modifies the production of extracellular polysaccharides in response to salt. EFB1 colonies grown in the presence of 0.3 M NaCl show a decrease in mucoidy, and in salt-supplemented liquid medium this organism produces 40% less exopolysaccharides. We isolated transposon-induced mutant that, when grown in the absence of salt, had a colony morphology (nonmucoid) similar to the colony morphology of the wild type grown in the presence of salt. Calcofluor fluorescence, proton nuclear magnetic resonance spectroscopy, and genetic analysis of the mutant indicated that galactoglucan, which is not produced under normal conditions by other R. meliloti strains, is produced by strain EFB1 and that production of this compound decreases when the organism is grown in the presence of salt. The mutant was found to be affected in a genetic region highly homologous to genes for galactoglucan production in R. meliloti Rm2011 (expE genes). However, sequence divergence occurs in a putative expE promoter region. A transcriptional fusion of the promoter with lacZ demonstrated that, unlike R. meliloti Rm2011, galactoglucan is produced constitutively by EFB1 and that its expression is reduced 10-fold during exponential growth in the presence of salt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional and evolutionary relatedness of genes for exopolysaccharide synthesis in Rhizobium meliloti and Rhizobium sp. strain NGR234.

Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functi...

متن کامل

The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.

Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata...

متن کامل

Rhizobium meliloti exopolysaccharides: genetic analyses and symbiotic importance.

Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synt...

متن کامل

Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti.

Exopolysaccharide production by Sinorhizobium meliloti is required for invasion of root nodules on alfalfa and successful establishment of a nitrogen-fixing symbiosis between the two partners. S. meliloti wild-type strain Rm1021 requires production of either succinoglycan, a polymer of repeating octasaccharide subunits, or EPS II, an exopolysaccharide of repeating dimer subunits. The reason for...

متن کامل

Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR.

A mildly acid-sensitive mutant of Rhizobium leguminosarum bv. viciae WSM710 (WR6-35) produced colonies which were more mucoid in phenotype than the wild-type. Strain WR6-35 contained a single copy of Tn5 and the observed mucoid phenotype, acid sensitivity and Tn5-induced kanamycin resistance were 100% co-transducible using phage RL38. WR6-35 produced threefold more exopolysaccharide (EPS) than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 3  شماره 

صفحات  -

تاریخ انتشار 1998