Polymeric assembly of hyperbranched building blocks to establish tunable nanoplatforms for lysosome acidity-responsive gene/drug co-delivery.
نویسندگان
چکیده
This study plans to develop a nanoparticle technology that can assemble different polymeric "building blocks" with various desired functionalities into one nanosystem in a pH-dependent manner. For this purpose, polymeric building blocks were specifically designed with hyperbranched architectures, and orthogonal pH-reversible phenylboronic acid-diols were taken as "joints" to integrate them together. To verify the idea, a corona-core dual-polymer nanoassembly was prepared as the vehicle for lysosomotropic gene/drug co-delivery. Phenylboronic acid modified hyperbranched oligoethylenimine (OEI-PBA) was arranged to cluster around the hydrophobic core composed of hyperbranched polyglycerol, just by mixing two polymers in an appropriate ratio at neutral conditions. Compared with the parent OEI-PBA, this nanoassembly demonstrated better capture of plasmid DNA, highly enhanced activity for cellular transport and gene transfection (up to 100 fold), the ability to further load hydrophobic drugs, lysosome acidity-targeting pH-dependent release of both carried cargoes, and improved cell-biocompatibility. To evaluate its potential for combinational gene/drug therapy, in vitro experiments using the therapeutic p53 gene and antitumor doxorubicin as models were carried out. This intracellular co-delivery led to apparently synergetic anti-cancer effects in cultured cancer cells. This dynamic paradigm shows interesting features including easy manipulation, reversible conjugation, lysosome-targeting pH-responsiveness, high co-delivery efficiency, and functional expandability by further accommodating other building blocks.
منابع مشابه
Polymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کاملThe Smart Drug Delivery System and Its Clinical Potential
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/tox...
متن کاملCore-shell magnetic pH-responsive vehicle for delivery of poorly water-soluble rosuvastatin
Objective(s): Development of an oral sustained-controlled release vehicle which, slowly releases the drug and maintains an effective drug concentration for a long time is aimed.Materials and Methods: A biodegradable magnetic polymeric drug delivery vehicle, using superparamagnetic iron oxide nanoparticles encapsulating by polyvinylpyrrolidone-block-polyethylene glycol-block-poly methacrylic aci...
متن کاملThe effect of polylactic acid support in stability and electrical field of heterocyclic coupled hexa peptide nano systems: A novel strateu to drug delivery
Biological materials. recently. are the building blocks of several self-assembling peptide and protein systems.The main challenge In molecular self-assembly is to design molecular building blocks that can undergospontaneous organization. These cyche peptides were produced by an alternating fl'ell number of D- and Laminoacids.which interact through non-covalent interactions co an array of selfas...
متن کاملUse of laser-triggered gold nanoparticle-grafted dual light and temperature-responsive polymeric sensor for the recognition of thioguanine as anti-tumor agent
Objective(s): Today, there is an urgent need for improved sensor materials for drug sensing and effective monitoring and interventions in this area are highly required to struggle drug abuse. The present study aimed to synthesize a thioguanine-responsive sensor based on a nanocomposite consisting of AuNP-grafted light- and temperature-responsive poly butylmethacrylate-co-acrylamide-co-methacryl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials science
دوره 3 7 شماره
صفحات -
تاریخ انتشار 2015