Efficient and Smooth RRT Motion Planning Using a Novel Extend Function for Wheeled Mobile Robots
نویسندگان
چکیده
In this paper we introduce a novel RRT extend function for wheeled mobile robots. The approach computes closed-loop forward simulations based on the kinematic model of the robot and enables the planner to efficiently generate smooth and feasible paths that connect any pairs of states. We extend the control law of an existing discontinuous state feedback controller to make it usable as an RRT extend function and prove that all relevant stability properties are retained. We study the properties of the new approach as extender for RRT and RRT* and compare it systematically to a spline-based approach and a large and small set of motion primitives. The results show that our approach generally produces smoother paths to the goal in less time with smaller trees. For RRT*, the approach produces also the shortest paths and achieves the lowest cost solutions when given more planning time.
منابع مشابه
Distance Metric Learning for RRT-Based Motion Planning for Wheeled Mobile Robots
The distance metric is a key component in RRT-based motion planning that deeply affects coverage of the state space, path quality and planning time. With the goal to speed up planning time, we introduce a learning approach to compute the distance metric for RRT-based planners. By exploiting a novel extend function which solves the two-point boundary value problem for wheeled mobile robots, we t...
متن کاملFuzzy Motion Control for Wheeled Mobile Robots in Real-Time
Due to various advantages of Wheeled Mobile Robots (WMRs), many researchers have focused to solve their challenges. The automatic motion control of such robots is an attractive problem and is one of the issues which should carefully be examined. In the current paper, the trajectory tracking problem of WMRs which are actuated by two independent electrical motors is deliberated. To this end, and ...
متن کاملDynamical formation control of wheeled mobile robots based on fuzzy logic
In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...
متن کاملBackward and forward path following control of a wheeled robot
A wheeled mobile robot is one of the most important types of mobile robots. A subcategory of these robots is wheeled robots towing trailer(s). Motion control problem, especially in backward motion is one of the challenging research topics in this field. In this article, a control algorithm for path-following problem of a tractor-trailer system is provided, which at the same time provides the ab...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کامل