The Martin Boundary in Non-lipschitz Domains

نویسنده

  • Richard F. Bass
چکیده

The Martin boundary with respect to the Laplacian and with respect to uniformly elliptic operators in divergence form can be identified with the Euclidean boundary in Cγ domains, where γ(x) = bx log log(1/x)/ log log log(1/x), b small. A counterexample shows that this result is very nearly sharp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Harnack principle for Brownian motions with measure-valued drifts in bounded Lipschitz domains

Let μ = (μ1, . . . , μd) be such that each μi is a signed measure on Rd belonging to the Kato class Kd,1. A Brownian motion in Rd with drift μ is a diffusion process in Rd whose generator can be informally written as 1 2 + μ · ∇. When each μi is given by Ui (x)dx for some function Ui , a Brownian motion with drift μ is a diffusion in Rd with generator 1 2 +U ·∇. In Kim and Song (Ill J Math 50(3...

متن کامل

Uniqueness Theorems for Inverse Obstacle Scattering Problems in Lipschitz Domains

For the Neumann and Robin boundary conditions the uniqueness theorems for inverse obstacle scattering problems are proved in Lipschitz domains. The role of non-smoothness of the boundary is analyzed.

متن کامل

Sobolev Spaces and Elliptic Equations

Lipschitz domains. Our presentations here will almost exclusively be for bounded Lipschitz domains. Roughly speaking, a domain (a connected open set) Ω ⊂ R is called a Lipschitz domain if its boundary ∂Ω can be locally represented by Lipschitz continuous function; namely for any x ∈ ∂Ω, there exists a neighborhood of x, G ⊂ R, such that G ∩ ∂Ω is the graph of a Lipschitz continuous function und...

متن کامل

Boundary-value problems for higher-order el- liptic equations in non-smooth domains

This paper presents a survey of recent results, methods, and open problems in the theory of higher order elliptic boundary value problems on Lipschitz and more general non-smooth domains. The main topics include the maximum principle and pointwise estimates on solutions in arbitrary domains, analogues of the Wiener test governing continuity of solutions and their derivatives at a boundary point...

متن کامل

A Remark on the Regularity of Solutions of Maxwell's Equations on Lipschitz Domains

Let ~ u be a vector eld on a bounded Lipschitz domain in R 3 , and let ~ u together with its divergence and curl be square integrable. If either the normal or the tangential component of ~ u is square inte-grable over the boundary, then ~ u belongs to the Sobolev space H 1=2 on the domain. This result gives a simple explanation for known results on the compact embedding of the space of solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005