Elemental t . g . principles of relativistic t - topos ( ∗ ) ( Presheafification of matter , space , and time )
نویسنده
چکیده
– We would like to solve the following problem: find a mathematical model formu lating I) quantum entanglement, II) particle-wave duality, III) universal objects (ur-sub-Planck objects): to be defined in terms of direct or inverse limits (defined by universal mapping proper ties) giving microcosm behaviors of space-time so as to give the smooth macrocosm space-time, and IV) the “curved” space-time associated with particles with mass in microcosm consistent with the notion of a light cone in macrocosm. Problems I) and II) are treated in Kato G., Europhys. Lett., 68 (2004) 467. In this paper, we will focus on III) and IV). As a candidate for such a model, we have introduced the category of presheaves over a site called a t-topos. During the last several years, the methods of category and sheaf theoretic approaches have been actively employed for the foundations of quantum physics and for quantum gravity. Par ticles, time, and space are presheafified in the following sense: a fundamental entity is a triple (m,κ, τ) of presheaves so that for an object V in a t-site, a local datum (m(V ), κ(V ), τ(V )) may provide a local state of the particle m = m(V ), i.e., the localization of presheaf m at V , in the neighborhood (κ(V ), τ(V )) of m. By presheafifying matter, space, and time, t-topos can provide sheaf-theoretic descriptions of ur-entanglement and ur-particle and ur-wave states() formulating the EPR-type non-locality and the duality in a double-slit experiment. Recall that specified). For more comments and the precise definitions of ur-entanglement and particle and wave ur-states, see the above-mentioned paper. The applications to a double-slit experiment and the EPR-type non-locality are described in detail in the forthcoming papers Kato G. and Tanaka T., Double slit experiment and t-topos, submitted to Found. Phys. and Kafatos M., presheaves m and m ′ are said to be ur-entangled when m and m ′ behave as one presheaf. Also recall: a presheaf m is said to be in particle ur-state (or wave ur-state) when the presheaf m is evaluated as m(V ) at a specified object V in the t-site (or when an object in the t-site is not Kato G., Roy S. and Tanaka T., The EPR-type non-locality and t-topos, to be submitted to Int. J. Pure Appl. Math., respectively. By the notion of decompositions of a presheaf and of an object of the t-site, ur-sub-Planck objects are defined as direct and inverse limits, respectively, in Definitions 2.1 and 2.4 in what will follow.
منابع مشابه
Elemental t . g . principles of relativistic t - topos ( ∗ ) ( Presheafification of matter
– We would like to solve the following problem: find a mathematical model formu lating I) quantum entanglement, II) particle-wave duality, III) universal objects (ur-sub-Planck objects): to be defined in terms of direct or inverse limits (defined by universal mapping proper ties) giving microcosm behaviors of space-time so as to give the smooth macrocosm space-time, and IV) the “curved” space...
متن کاملElemental principles of t-topos
– In this paper, a sheaf-theoretic approach toward fundamental problems in quantum physics is made. For example, the particle-wave duality depends upon whether or not a presheaf is evaluated at a specified object. The t-topos theoretic interpretations of doubleslit interference, uncertainty principle(s), and the EPR-type non-locality are given. As will be explained, there are more than one type...
متن کاملGyroharmonic Analysis on Relativistic Gyrogroups
Einstein, M"{o}bius, and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis. Although there is an algebraic gyroisomorphism between the three models we show that there are some differences between them. Our...
متن کاملSinglet scalar dark matter in noncommutative space
In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered, but our information about the nature of dark matter is still limited. There are such particle candidates as scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...
متن کاملTHE INTERNAL IDEAL LATTICE IN THE TOPOS OF M-SETS
We believe that the study of the notions of universal algebra modelled in an arbitarry topos rather than in the category of sets provides a deeper understanding of the real features of the algebraic notions. [2], [3], [4], [S], [6], [7], [13], [14] are some examples of this approach. The lattice Id(L) of ideals of a lattice L (in the category of sets) is an important ingredient of the categ...
متن کامل