Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

نویسندگان

  • Alexander S Antonarakis
  • Sassan S Saatchi
  • Robin L Chazdon
  • Paul R Moorcroft
چکیده

Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved predictions, suggesting that further improvements of structural and carbon-flux metrics will also depend on obtaining reliable estimates of forest composition and accurate representation of the fine-scale vertical and horizontal structure of plant canopies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Forest Structural Parameters from Lidar and Sar Data

Vegetation spatial structure including plant height, biomass, vertical and horizontal heterogeneity, is an important factor influencing the exchanges of matter and energy between landscape and atmosphere, and the biodiversity of ecosystems. Regional and global forest biomass and forest structure estimation is essential for understanding and monitoring ecosystem responses to human activities and...

متن کامل

Radar and Lidar Synergy Studies by Model Simulation

The use of lidar and radar instruments to measure forest structure attributes such as height and biomass are being considered for future Earth Observation satellite missions. Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield information about the vertical profile of the canopy. Synthetic Aperture Radar (SAR) is known to sens...

متن کامل

Three-stage inversion improvement for forest height estimation using dual-PolInSAR data

This paper addresses an algorithm for forest height estimation using single frequency single baseline dual polarization radar interferometry data. The proposed method is based on a physical two layer volume over ground model and is represented using polarimetric synthetic aperture radar interferometry (PolInSAR) technique. The presented algorithm provides the opportunity to take advantages of t...

متن کامل

Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects

Research activities combining lidar and radar remote sensing have increased in recent years. The main focus in combining lidar-radar forest remote sensing has been on the retrieval of the aboveground biomass (AGB), which is a primary variable related to carbon cycle in land ecosystems, and has therefore been identified as an essential climate variable. In this review, we summarize the studies c...

متن کامل

Biomass Estimation as Function of Vertical Forest Structure and Forest Height. Potential and Limitations for Remote Sensing (radar and Lidar)

Forest biomass stock and spatial distribution are still unknown parameters for many regions of the world. Today’s information is largely based on ground measurements on a plot basis without remote regions coverage. Thus, a method capable of quantifying biomass by means of Remote Sensing could help to reduce these uncertainties and contribute to a better understanding of the carbon cycle (Hought...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecological applications : a publication of the Ecological Society of America

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2011