An Efficient High-Dimensional Sparse Fourier Transform

نویسندگان

  • Shaogang Wang
  • Vishal M. Patel
  • Athina P. Petropulu
چکیده

We propose RSFT, which is an extension of the one dimensional Sparse Fourier Transform algorithm to higher dimensions in a way that it can be applied to real, noisy data. The RSFT allows for off-grid frequencies. Furthermore, by incorporating Neyman-Pearson detection, the frequency detection stages in RSFT do not require knowledge of the exact sparsity of the signal and are more robust to noise. We analyze the asymptotic performance of RSFT, and study the computational complexity versus the worst case signal SNR tradeoff. We show that by choosing the proper parameters, the optimal tradeoff can be achieved. We discuss the application of RSFT on short range ubiquitous radar signal processing, and demonstrate its feasibility via simulations. Index Terms Array signal processing, sparse Fourier transform, detection and estimation, radar signal processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Methods for the Fourier Analysis of Sparse High-Dimensional Functions

A straightforward discretisation of high-dimensional problems often leads to a curse of dimensions and thus the use of sparsity has become a popular tool. Efficient algorithms like the fast Fourier transform (FFT) have to be customised to these thinner discretisations and we focus on two major topics regarding the Fourier analysis of high-dimensional functions: We present stable and effective a...

متن کامل

High-dimensional sparse FFT based on sampling along multiple rank-1 lattices

The reconstruction of high-dimensional sparse signals is a challenging task in a wide range of applications. In order to deal with high-dimensional problems, efficient sparse fast Fourier transform algorithms are essential tools. The second and third authors have recently proposed a dimension-incremental approach, which only scales almost linear in the number of required sampling values and alm...

متن کامل

Interpolation lattices for hyperbolic cross trigonometric polynomials

Sparse grid discretisations allow for a severe decrease in the number of degrees of freedom for high dimensional problems. Recently, the corresponding hyperbolic cross fast Fourier transform has been shown to exhibit numerical instabilities already for moderate problem sizes. In contrast to standard sparse grids as spatial discretisation, we propose the use of oversampled lattice rules known fr...

متن کامل

Sparse 2D Fast Fourier Transform

This paper extends the concepts of the Sparse Fast Fourier Transform (sFFT) Algorithm introduced in [1] to work with two dimensional (2D) data. The 2D algorithm requires several generalizations to multiple key concepts of the 1D sparse Fourier transform algorithm. Furthermore, several parameters needed in the algorithm are optimized for the reconstruction of sparse image spectra. This paper add...

متن کامل

Sparse Eigenvectors of the Discrete Fourier Transform

We construct a basis of sparse eigenvectors for the N-dimensional discrete Fourier transform. The sparsity differs from the optimal by at most a factor of four. When N is a perfect square, the basis is orthogonal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.01050  شماره 

صفحات  -

تاریخ انتشار 2016